The Kirkendall Plane in Binary Interdiffusion Systems

Article Preview

Abstract:

There is now a considerable body of experimental evidence to indicate that in a volumediffusion controlled interaction the Kirkendall plane need not be unique. The Kirkendall plane can microstructurally be stable as well as unstable (it does not exist!). Under predictable circumstances, it can also bifurcate and even trifurcate. This can be rationalised in terms of Kirkendall velocity construction as well as from a purely chemical point of view considering diffusion-controlled interactions at the interphase interfaces. The physico-chemical approach is also used to explain significance of the Kirkendall effect in the morphogenesis of interdiffusion systems.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 233-234)

Pages:

61-76

Citation:

Online since:

December 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. D. Smigelskas and E. O. Kirkendall: Trans. AIME Vol. 171 (1947), p.130.

Google Scholar

[2] L.S. Darken: Trans AIME Vol. 175 (1948), p.184.

Google Scholar

[3] P.G. Shewmon: Diffusion in Solids (McGraw-Hill Book Company, USA 1963).

Google Scholar

[4] J.R. Manning: Diffusion Kinetics for Atoms in Crystals (D. Van Nostrand Company, Inc, Princeton, USA 1968).

Google Scholar

[5] J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State (The Institute of Metals, London, UK 1987).

Google Scholar

[6] J. Philibert: Atom Movements, Diffusion and Mass Transport in Solids ( Les Éditions de Physique, Les Ulis, France 1991).

Google Scholar

[7] A.R. Allnatt and A.B. Lidiard: Atomic Transport in Solids (Cambridge University Press, UK 1993).

Google Scholar

[8] M.E. Glicksman: Diffusion in Solids (John Wiley & Sons, Inc, New York, USA 2000).

Google Scholar

[9] C. Matano: Japan J Physics Vol. 8 (1933), p.109.

Google Scholar

[10] F. Sauer and V. Freise: Z Elektrochem Vol. 66 (1962), p.353.

Google Scholar

[11] M.J.H. van Dal, M.C.L.P. Pleumeekers, A.A. Kodentsov and F.J.J. van Loo: Acta mater Vol. 48 (2000), p.385.

Google Scholar

[12] M.J.H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov and F.J.J. van Loo: Phys Rev Lett Vol. 86 (2001), p.3352.

DOI: 10.1103/physrevlett.86.3352

Google Scholar

[13] M.J.H. van Dal, A.M. Gusak, C. Cserháti, A.A. Kodentsov and F.J.J. van Loo: Phil Mag A Vol. 82 (2002), p.943.

Google Scholar

[14] Y. Chang, I. Gyuk and J. Franks: Acta Met Vol. 19 (1971), p.939.

Google Scholar

[15] C. Kao and Y. Chang: Intermetallics: Vol. 1 (1993), p.237.

Google Scholar

[16] A. Paul, A. Kodentsov and F. van Loo: Acta mater Vol. 52 (2004), p.4041.

Google Scholar

[17] M.J.H. van Dal, D.G.G.M. Huibers, A.A. Kodentsov and F.J.J. van Loo: Intermetallics Vol. 9 (2001), p.409.

Google Scholar

[18] C. Wagner: Acta Met Vol. 17 (1969), p.99.

Google Scholar

[19] M.J.H. van Dal, A.A. Kodentsov, F.J.J. van Loo: Intermetallics Vol. 9 (2001), p.451.

Google Scholar

[20] P. Villars and L. Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Ohio, USA 1985).

Google Scholar

[21] F.J.J. van Loo, B. Pieraggi and R.A. Rapp: Acta metall mater Vol. 38 (1990), p.1769.

Google Scholar

[22] A. Paul, M.J.H. van Dal, A.A. Kodentsov and F.J.J. van Loo: Acta mater Vol. 52 (2004), p.623.

Google Scholar

[23] F.J.J. van Loo: Diffusion in the Titanium - Aluminium System ( PhD Thesis, Eindhoven, The Netherlands 1971).

Google Scholar

[24] F.J.J. van Loo and G.D. Rieck: Acta Met Vol. 21 (1973), p.73.

Google Scholar

[25] T. Ikeda, H. Kadowaki and H. Nakajima: Acta mater Vol. 49 (2001), p.3475.

Google Scholar

[26] V.I. Dybkov: Growth Kinetics of Chemical Compound Layers (Cambridge International Science Publishing, UK 1998).

Google Scholar