An Ab Initio Study of the Effects and Stability of Vacancies, Antisites and Small Radius Atoms (B, C, N and O) in the B2-FeAl Structure

Article Preview

Abstract:

Atomistic modeling based on Density Functional Theory (DFT) within the framework of the Generalized Gradient Approximation (GGA) is used to show the effects of defects such as vacancy, boron, carbon, nitrogen and oxygen substituting Fe or Al atoms in the B2-FeAl structure. The site preference of each type of defect is determined from a comparison of total energycalculations using a supercell structure, consisting of 16-atoms, within which each the various defects are introduced. The changes in lattice parameter and bulk modulus associated to the presence of the defects in the FeAl matrix are also studied.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 233-234)

Pages:

87-96

Citation:

Online since:

December 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Sauthoff, Intermetallics, VCH Verlag, Weinheim (1995).

Google Scholar

[2] J.H. Westbrook and R.L. Fleischer, Intermetallic Compounds: Principles and Practice, Vols. 1 and 2, (J. Wiley 1994).

Google Scholar

[3] C.T. Liu, E.P. George, P.J. Maziasz, and J.H. Schneibel, Mater. Sci.Eng. A258, 84 (1998). 4 C.G. McKamey, J.H. Devan, P.F. Tortorelli, and V.K. Sikka, J. Mater. Res 6, 1779 (1991).

Google Scholar

[5] S.C. Deevi, P.J. Maziasz, and V.K. Sikka, R.W. Cahn (Eds.), Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM International, Metals Park, OH, 1997.

DOI: 10.1080/10667857.1997.11752751

Google Scholar

[6] N.I. Kulikov, A.V. Postnikov, G. Borstel, and J. Braun, Phys. Rev. B 59, 6824 (1999). Defects and Diffusion Forum Vols. 233-234 93

Google Scholar

[7] J. Bogner, W. Steiner, M. Reissner, P. Mohn, P. Blaha, K. Schwarz, R. Krachler, H. Ipser, and B. Sepiol, Phys. Rev. B 58, 14922 (1998).

Google Scholar

[8] C.L. Fu, Phys. Rev. B 52, 3151 (1995).

Google Scholar

[9] A.J. Freeman, J.H. Xiu, T. Hong, and W. Lin, in Ordered Intermetallics:Physical Metallurgy and Mechanical Behavior. (Kluwer academic 1992).

Google Scholar

[10] D.G. Morris and S.C. Deevi, Mater. Sci. Eng. A 329-331, 570 (2002).

Google Scholar

[11] C.T. Liu, Mater. Chem. Phys. 42, 77 (1995).

Google Scholar

[12] M. A. Crimp and K.M. Vedula, Mater. Sci. Eng. A165, 29 (1993).

Google Scholar

[13] K. Yoshimi, S. Hanada, and H. Tokumo, Mat. Trans. JIM 35, 51 (1994).

Google Scholar

[14] Y.A. Chang, L.M. Pike, C.T. Liu, A.R. Bilbrey, D.S. Stone, Intermetallics 1, 107(1993).

Google Scholar

[15] H. Mehrer, Mater. Trans. JIM 37, 1259 (1996).

Google Scholar

[16] J. Wolff, M. Franz, A. Broska, B. Köhler, and Th. Hehenkamp, Mater. Sci. Eng. A239-240, 213 (1997).

Google Scholar

[17] A. Fraczkiewicz, A-S. Gay, and M. Biscondi M, Mater. Sci. Eng. A258, 108(1998).

Google Scholar

[18] A-S. Gay, A. Fraczkiewicz, and M. Biscondi, Mechanisms of the intergranular segregation of boron in (B2) FeAl alloys, Materials Science Forum, 294-296 (1999).

DOI: 10.4028/www.scientific.net/msf.294-296.453

Google Scholar

[19] D. G. Morris and M. A. Morris-Munoz, Intermetallics 7, 1121 (1999).

Google Scholar

[20] A. Radhakrishna, R. G. Baligidad and D. S. Sarma, Scripta Materialia 45, 1077 (2001).

Google Scholar

[21] R. Banerjee, S. Amancherla, S. Banerjee, and H. L. Fraser, Acta Materialia 50, 633 (2002).

Google Scholar

[22] G. H. Bozzolo, R. D. Noebe, and C. Amador, Intermetallics 10, 149 (2002).

Google Scholar

[23] A. O. Mekhrabov and M. V. Akdeniz, Acta Materialia 47, 2067 (1999).

Google Scholar

[24] N. I. Medvedeva, Yu. N. Gornostyrev, D. L. Novikov, O. N. Mryasov, and A. J. Freeman, Acta Materialia 46, 3433 (1998).

DOI: 10.1016/s1359-6454(98)00042-1

Google Scholar

[25] P. R. Munroe and H. Kong C, Intermetallics 4, 403 (1996).

Google Scholar

[26] O. Calonne, A. Fraczkiewicz and F. Louchet, Scripta Materialia 43, 69 (2000).

DOI: 10.1016/s1359-6462(00)00367-5

Google Scholar

[27] I. Baker, X. Li, H. Xiao, R. Carleton and E. P. Georg, Intermetallics 6, 177 (1998).

Google Scholar

[28] S. C. Deevi , V. K. Sikka , B. J. Inkson and R. W. Cahn, Scripta Materialia 36, 899 (1997).

Google Scholar

[29] R.G. Baligidad, U. Prakash, A. Radhakrishna, and V.R. Rao, Scripta Materialia 36, 667 (1997).

DOI: 10.1016/s1359-6462(96)00441-1

Google Scholar

[30] S.C. Deevi, V.K. Sikka, P.J. Maziasz, R.W. Cahn (Eds.), Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, (ASM, Materials Park 1996).

DOI: 10.1080/10667857.1997.11752751

Google Scholar

[31] K. Schwarz, P. Blaha and G. K. H. Madsen, Computer Physics Communications 147, 71 (2002); K. Schwarz and P. Blaha, Computational Materials Science 28, 259 (2003).

Google Scholar

[32] D.J. Singh, Plane Waves, Peudopotential and the LAPW Method, (Kluwer Academic Publishers 1994).

Google Scholar

[33] K. Schwarz, Journal of Solid State Chemistry 176, 319 (2003).

Google Scholar

[34] P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964). 94 Defects and Diffusion in MetalsAn Annual Retrospective - VII

Google Scholar

[35] W. Kohn, L.S. Sham, Phys. Rev. A 140, 1133(1965).

Google Scholar

[36] P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology, (1997). P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990).

DOI: 10.1016/0010-4655(90)90187-6

Google Scholar

[37] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671(1992); J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

DOI: 10.1103/physrevb.46.6671

Google Scholar

[38] Y. A. Chang, L. M. Pike, C. T. Liu, A. R. Bilbrey, and D. S. Stone, Intermetallics 15, 107 (1993).

Google Scholar

[39] L. M. Pike. The effects of ternary alloying on the defect structure and mechanical properties of B2 compounds. (PhD thesis, University of Wisconsin-Madison, 1998).

Google Scholar

[40] H. -E. Schaefer, K. Frenner, and R. Würschum, Intermetallics 7, 277 (1999).

Google Scholar

[41] M.J. Mehl, D.J. Singh and D.A. Papaconstantopoulos, Mater. Sci. Eng. A 170, 49 (1993).

Google Scholar

[42] A.J. Freeman, T. Hong, W. Lin, J.U. Xu , Phase stability and the role of ternary additions on electronic and mechanical properties of aluminium intermetallics. In: High-temperature ordered inter-metallic alloys IV, Johnson LA, Pope DP, Stiegler J. O., editors. Pittsburgh (PA). (The Materials Research Society 1991).

Google Scholar

[43] H. Okamoto and P. Beck P A 1972 Monatsh. Chem. 103, 907 (1972).

Google Scholar

[44] S. H. Yang, M. J. Mehl, D. A. Papaconstantopoulos and M. B. Scott, J. Phys.: Condens. Matter 14, 1895-1902 (2002). Defects and Diffusion Forum Vols. 233-234 95Defects and Diffusion in MetalsAn Annual Retrospective - VII 10.4028/www.scientific.net/DDF.233-234 An Ab Initio Study of the Effects and Stability of Vacancies, Antisites and Small Radius Atoms (B, C, N and O) in the B2-FeAl Structure 10.4028/www.scientific.net/DDF.233-234.87 DOI References

DOI: 10.4028/www.scientific.net/ddf.233-234.87

Google Scholar

[5] S.C. Deevi, P.J. Maziasz, and V.K. Sikka, R.W. Cahn (Eds.), Proceedings of the International ymposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM nternational, Metals Park, OH, 1997

DOI: 10.1016/S0079-6425(97)00014-5

Google Scholar

[6] N.I. Kulikov, A.V. Postnikov, G. Borstel, and J. Braun, Phys. Rev. B 59, 6824 (1999)

DOI: 10.1103/PhysRevB.59.6824

Google Scholar

[7] J. Bogner, W. Steiner, M. Reissner, P. Mohn, P. Blaha, K. Schwarz, R. Krachler, H. Ipser, and . Sepiol, Phys. Rev. B 58, 14922 (1998)

DOI: 10.1103/PhysRevB.58.14922

Google Scholar

[8] C.L. Fu, Phys. Rev. B 52, 3151 (1995)

DOI: 10.1525/rep.1995.49.1.99p0259u

Google Scholar

[11] C.T. Liu, Mater. Chem. Phys. 42, 77 (1995)

DOI: 10.1007/BF00159242

Google Scholar

[12] M. A. Crimp and K.M. Vedula, Mater. Sci. Eng. A165, 29 (1993)

DOI: 10.1016/0921-5093(93)90623-M

Google Scholar

[16] J. Wolff, M. Franz, A. Broska, B. Köhler, and Th. Hehenkamp, Mater. Sci. Eng. A239-240, 13 (1997)

DOI: 10.1016/S0921-5093(97)00584-4

Google Scholar

[18] A-S. Gay, A. Fraczkiewicz, and M. Biscondi, Mechanisms of the intergranular egregation of boron in (B2) FeAl alloys, Materials Science Forum, 294-296 (1999)

DOI: 10.4028/www.scientific.net/MSF.294-296.453

Google Scholar

[19] D. G. Morris and M. A. Morris-Munoz, Intermetallics 7, 1121 (1999)

DOI: 10.1016/S0966-9795(99)00038-2

Google Scholar

[20] A. Radhakrishna, R. G. Baligidad and D. S. Sarma, Scripta Materialia 45, 1077 (2001)

DOI: 10.1016/S1359-6462(01)01142-3

Google Scholar

[21] R. Banerjee, S. Amancherla, S. Banerjee, and H. L. Fraser, Acta Materialia 50, 633 (2002)

DOI: 10.1016/S1359-6454(01)00371-8

Google Scholar

[23] A. O. Mekhrabov and M. V. Akdeniz, Acta Materialia 47, 2067 (1999)

DOI: 10.1016/S1359-6454(99)00087-7

Google Scholar

[24] N. I. Medvedeva, Yu. N. Gornostyrev, D. L. Novikov, O. N. Mryasov, and A. J. Freeman, cta Materialia 46, 3433 (1998)

DOI: 10.1016/S1359-6454(98)00042-1

Google Scholar

[25] P. R. Munroe and H. Kong C, Intermetallics 4, 403 (1996)

DOI: 10.1016/0966-9795(95)00057-7

Google Scholar

[26] O. Calonne, A. Fraczkiewicz and F. Louchet, Scripta Materialia 43, 69 (2000)

DOI: 10.1016/S1359-6462(00)00367-5

Google Scholar

[28] S. C. Deevi , V. K. Sikka , B. J. Inkson and R. W. Cahn, Scripta Materialia 36, 899 (1997). doi:10.1016/S1359-6462(96)00497-6 [29] R.G. Baligidad, U. Prakash, A. Radhakrishna, and V.R. Rao, Scripta Materialia 36, 667 (1997)

DOI: 10.1016/S1359-6462(96)00340-5

Google Scholar

[31] K. Schwarz, P. Blaha and G. K. H. Madsen, Computer Physics Communications 147, 71 2002); K. Schwarz and P. Blaha, Computational Materials Science 28, 259 (2003)

DOI: 10.1016/S0010-4655(02)00206-0

Google Scholar

[33] K. Schwarz, Journal of Solid State Chemistry 176, 319 (2003)

DOI: 10.1016/S0022-4596(03)00213-5

Google Scholar

[34] P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

DOI: 10.1103/PhysRev.136.B864

Google Scholar

[36] P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology, (1997). P. laha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

DOI: 10.1016/0010-4655(90)90187-6

Google Scholar

[38] Y. A. Chang, L. M. Pike, C. T. Liu, A. R. Bilbrey, and D. S. Stone, Intermetallics 15, 107 1993)

DOI: 10.1016/0966-9795(93)90028-T

Google Scholar

[40] H. -E. Schaefer, K. Frenner, and R. Würschum, Intermetallics 7, 277 (1999)

DOI: 10.1016/S0966-9795(98)00121-6

Google Scholar

[41] M.J. Mehl, D.J. Singh and D.A. Papaconstantopoulos, Mater. Sci. Eng. A 170, 49 (1993)

DOI: 10.1016/0921-5093(93)90368-O

Google Scholar

[44] S. H. Yang, M. J. Mehl, D. A. Papaconstantopoulos and M. B. Scott, J. Phys.: Condens. Matter 4, 1895-1902 (2002)

DOI: 10.1088/0953-8984/14/8/317

Google Scholar

[5] S.C. Deevi, P.J. Maziasz, and V.K. Sikka, R.W. Cahn (Eds.), Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM International, Metals Park, OH, 1997

DOI: 10.1016/S0079-6425(97)00014-5

Google Scholar

[7] J. Bogner, W. Steiner, M. Reissner, P. Mohn, P. Blaha, K. Schwarz, R. Krachler, H. Ipser, and B. Sepiol, Phys. Rev. B 58, 14922 (1998)

DOI: 10.1103/PhysRevB.58.14922

Google Scholar

[16] J. Wolff, M. Franz, A. Broska, B. Khler, and Th. Hehenkamp, Mater. Sci. Eng. A239-240, 213 (1997)

DOI: 10.1016/S0921-5093(97)00584-4

Google Scholar

[18] A-S. Gay, A. Fraczkiewicz, and M. Biscondi, Mechanisms of the intergranular segregation of boron in (B2) FeAl alloys, Materials Science Forum, 294-296 (1999)

DOI: 10.4028/www.scientific.net/MSF.294-296.453

Google Scholar

[24] N. I. Medvedeva, Yu. N. Gornostyrev, D. L. Novikov, O. N. Mryasov, and A. J. Freeman, Acta Materialia 46, 3433 (1998)

DOI: 10.1016/S1359-6454(98)00042-1

Google Scholar

[31] K. Schwarz, P. Blaha and G. K. H. Madsen, Computer Physics Communications 147, 71 (2002); K. Schwarz and P. Blaha, Computational Materials Science 28, 259 (2003)

DOI: 10.1016/S0010-4655(02)00206-0

Google Scholar

[36] P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology, (1997). P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

DOI: 10.1016/0010-4655(90)90187-6

Google Scholar

[38] Y. A. Chang, L. M. Pike, C. T. Liu, A. R. Bilbrey, and D. S. Stone, Intermetallics 15, 107 (1993)

DOI: 10.1016/0966-9795(93)90028-T

Google Scholar

[40] H. -E. Schaefer, K. Frenner, and R. Wrschum, Intermetallics 7, 277 (1999). doi:10.1016/S0966-9795(98)00121-6 [44] S. H. Yang, M. J. Mehl, D. A. Papaconstantopoulos and M. B. Scott, J. Phys.: Condens. Matter 14, 18951902 (2002)

DOI: 10.1088/0953-8984/14/8/317

Google Scholar