[1]
G. Sauthoff, Intermetallics, VCH Verlag, Weinheim (1995).
Google Scholar
[2]
J.H. Westbrook and R.L. Fleischer, Intermetallic Compounds: Principles and Practice, Vols. 1 and 2, (J. Wiley 1994).
Google Scholar
[3]
C.T. Liu, E.P. George, P.J. Maziasz, and J.H. Schneibel, Mater. Sci.Eng. A258, 84 (1998). 4 C.G. McKamey, J.H. Devan, P.F. Tortorelli, and V.K. Sikka, J. Mater. Res 6, 1779 (1991).
Google Scholar
[5]
S.C. Deevi, P.J. Maziasz, and V.K. Sikka, R.W. Cahn (Eds.), Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM International, Metals Park, OH, 1997.
DOI: 10.1080/10667857.1997.11752751
Google Scholar
[6]
N.I. Kulikov, A.V. Postnikov, G. Borstel, and J. Braun, Phys. Rev. B 59, 6824 (1999). Defects and Diffusion Forum Vols. 233-234 93
Google Scholar
[7]
J. Bogner, W. Steiner, M. Reissner, P. Mohn, P. Blaha, K. Schwarz, R. Krachler, H. Ipser, and B. Sepiol, Phys. Rev. B 58, 14922 (1998).
Google Scholar
[8]
C.L. Fu, Phys. Rev. B 52, 3151 (1995).
Google Scholar
[9]
A.J. Freeman, J.H. Xiu, T. Hong, and W. Lin, in Ordered Intermetallics:Physical Metallurgy and Mechanical Behavior. (Kluwer academic 1992).
Google Scholar
[10]
D.G. Morris and S.C. Deevi, Mater. Sci. Eng. A 329-331, 570 (2002).
Google Scholar
[11]
C.T. Liu, Mater. Chem. Phys. 42, 77 (1995).
Google Scholar
[12]
M. A. Crimp and K.M. Vedula, Mater. Sci. Eng. A165, 29 (1993).
Google Scholar
[13]
K. Yoshimi, S. Hanada, and H. Tokumo, Mat. Trans. JIM 35, 51 (1994).
Google Scholar
[14]
Y.A. Chang, L.M. Pike, C.T. Liu, A.R. Bilbrey, D.S. Stone, Intermetallics 1, 107(1993).
Google Scholar
[15]
H. Mehrer, Mater. Trans. JIM 37, 1259 (1996).
Google Scholar
[16]
J. Wolff, M. Franz, A. Broska, B. Köhler, and Th. Hehenkamp, Mater. Sci. Eng. A239-240, 213 (1997).
Google Scholar
[17]
A. Fraczkiewicz, A-S. Gay, and M. Biscondi M, Mater. Sci. Eng. A258, 108(1998).
Google Scholar
[18]
A-S. Gay, A. Fraczkiewicz, and M. Biscondi, Mechanisms of the intergranular segregation of boron in (B2) FeAl alloys, Materials Science Forum, 294-296 (1999).
DOI: 10.4028/www.scientific.net/msf.294-296.453
Google Scholar
[19]
D. G. Morris and M. A. Morris-Munoz, Intermetallics 7, 1121 (1999).
Google Scholar
[20]
A. Radhakrishna, R. G. Baligidad and D. S. Sarma, Scripta Materialia 45, 1077 (2001).
Google Scholar
[21]
R. Banerjee, S. Amancherla, S. Banerjee, and H. L. Fraser, Acta Materialia 50, 633 (2002).
Google Scholar
[22]
G. H. Bozzolo, R. D. Noebe, and C. Amador, Intermetallics 10, 149 (2002).
Google Scholar
[23]
A. O. Mekhrabov and M. V. Akdeniz, Acta Materialia 47, 2067 (1999).
Google Scholar
[24]
N. I. Medvedeva, Yu. N. Gornostyrev, D. L. Novikov, O. N. Mryasov, and A. J. Freeman, Acta Materialia 46, 3433 (1998).
DOI: 10.1016/s1359-6454(98)00042-1
Google Scholar
[25]
P. R. Munroe and H. Kong C, Intermetallics 4, 403 (1996).
Google Scholar
[26]
O. Calonne, A. Fraczkiewicz and F. Louchet, Scripta Materialia 43, 69 (2000).
DOI: 10.1016/s1359-6462(00)00367-5
Google Scholar
[27]
I. Baker, X. Li, H. Xiao, R. Carleton and E. P. Georg, Intermetallics 6, 177 (1998).
Google Scholar
[28]
S. C. Deevi , V. K. Sikka , B. J. Inkson and R. W. Cahn, Scripta Materialia 36, 899 (1997).
Google Scholar
[29]
R.G. Baligidad, U. Prakash, A. Radhakrishna, and V.R. Rao, Scripta Materialia 36, 667 (1997).
DOI: 10.1016/s1359-6462(96)00441-1
Google Scholar
[30]
S.C. Deevi, V.K. Sikka, P.J. Maziasz, R.W. Cahn (Eds.), Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, (ASM, Materials Park 1996).
DOI: 10.1080/10667857.1997.11752751
Google Scholar
[31]
K. Schwarz, P. Blaha and G. K. H. Madsen, Computer Physics Communications 147, 71 (2002); K. Schwarz and P. Blaha, Computational Materials Science 28, 259 (2003).
Google Scholar
[32]
D.J. Singh, Plane Waves, Peudopotential and the LAPW Method, (Kluwer Academic Publishers 1994).
Google Scholar
[33]
K. Schwarz, Journal of Solid State Chemistry 176, 319 (2003).
Google Scholar
[34]
P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964). 94 Defects and Diffusion in MetalsAn Annual Retrospective - VII
Google Scholar
[35]
W. Kohn, L.S. Sham, Phys. Rev. A 140, 1133(1965).
Google Scholar
[36]
P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology, (1997). P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990).
DOI: 10.1016/0010-4655(90)90187-6
Google Scholar
[37]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671(1992); J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
DOI: 10.1103/physrevb.46.6671
Google Scholar
[38]
Y. A. Chang, L. M. Pike, C. T. Liu, A. R. Bilbrey, and D. S. Stone, Intermetallics 15, 107 (1993).
Google Scholar
[39]
L. M. Pike. The effects of ternary alloying on the defect structure and mechanical properties of B2 compounds. (PhD thesis, University of Wisconsin-Madison, 1998).
Google Scholar
[40]
H. -E. Schaefer, K. Frenner, and R. Würschum, Intermetallics 7, 277 (1999).
Google Scholar
[41]
M.J. Mehl, D.J. Singh and D.A. Papaconstantopoulos, Mater. Sci. Eng. A 170, 49 (1993).
Google Scholar
[42]
A.J. Freeman, T. Hong, W. Lin, J.U. Xu , Phase stability and the role of ternary additions on electronic and mechanical properties of aluminium intermetallics. In: High-temperature ordered inter-metallic alloys IV, Johnson LA, Pope DP, Stiegler J. O., editors. Pittsburgh (PA). (The Materials Research Society 1991).
Google Scholar
[43]
H. Okamoto and P. Beck P A 1972 Monatsh. Chem. 103, 907 (1972).
Google Scholar
[44]
S. H. Yang, M. J. Mehl, D. A. Papaconstantopoulos and M. B. Scott, J. Phys.: Condens. Matter 14, 1895-1902 (2002). Defects and Diffusion Forum Vols. 233-234 95Defects and Diffusion in MetalsAn Annual Retrospective - VII 10.4028/www.scientific.net/DDF.233-234 An Ab Initio Study of the Effects and Stability of Vacancies, Antisites and Small Radius Atoms (B, C, N and O) in the B2-FeAl Structure 10.4028/www.scientific.net/DDF.233-234.87 DOI References
DOI: 10.4028/www.scientific.net/ddf.233-234.87
Google Scholar
[5]
S.C. Deevi, P.J. Maziasz, and V.K. Sikka, R.W. Cahn (Eds.), Proceedings of the International ymposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM nternational, Metals Park, OH, 1997
DOI: 10.1016/S0079-6425(97)00014-5
Google Scholar
[6]
N.I. Kulikov, A.V. Postnikov, G. Borstel, and J. Braun, Phys. Rev. B 59, 6824 (1999)
DOI: 10.1103/PhysRevB.59.6824
Google Scholar
[7]
J. Bogner, W. Steiner, M. Reissner, P. Mohn, P. Blaha, K. Schwarz, R. Krachler, H. Ipser, and . Sepiol, Phys. Rev. B 58, 14922 (1998)
DOI: 10.1103/PhysRevB.58.14922
Google Scholar
[8]
C.L. Fu, Phys. Rev. B 52, 3151 (1995)
DOI: 10.1525/rep.1995.49.1.99p0259u
Google Scholar
[11]
C.T. Liu, Mater. Chem. Phys. 42, 77 (1995)
DOI: 10.1007/BF00159242
Google Scholar
[12]
M. A. Crimp and K.M. Vedula, Mater. Sci. Eng. A165, 29 (1993)
DOI: 10.1016/0921-5093(93)90623-M
Google Scholar
[16]
J. Wolff, M. Franz, A. Broska, B. Köhler, and Th. Hehenkamp, Mater. Sci. Eng. A239-240, 13 (1997)
DOI: 10.1016/S0921-5093(97)00584-4
Google Scholar
[18]
A-S. Gay, A. Fraczkiewicz, and M. Biscondi, Mechanisms of the intergranular egregation of boron in (B2) FeAl alloys, Materials Science Forum, 294-296 (1999)
DOI: 10.4028/www.scientific.net/MSF.294-296.453
Google Scholar
[19]
D. G. Morris and M. A. Morris-Munoz, Intermetallics 7, 1121 (1999)
DOI: 10.1016/S0966-9795(99)00038-2
Google Scholar
[20]
A. Radhakrishna, R. G. Baligidad and D. S. Sarma, Scripta Materialia 45, 1077 (2001)
DOI: 10.1016/S1359-6462(01)01142-3
Google Scholar
[21]
R. Banerjee, S. Amancherla, S. Banerjee, and H. L. Fraser, Acta Materialia 50, 633 (2002)
DOI: 10.1016/S1359-6454(01)00371-8
Google Scholar
[23]
A. O. Mekhrabov and M. V. Akdeniz, Acta Materialia 47, 2067 (1999)
DOI: 10.1016/S1359-6454(99)00087-7
Google Scholar
[24]
N. I. Medvedeva, Yu. N. Gornostyrev, D. L. Novikov, O. N. Mryasov, and A. J. Freeman, cta Materialia 46, 3433 (1998)
DOI: 10.1016/S1359-6454(98)00042-1
Google Scholar
[25]
P. R. Munroe and H. Kong C, Intermetallics 4, 403 (1996)
DOI: 10.1016/0966-9795(95)00057-7
Google Scholar
[26]
O. Calonne, A. Fraczkiewicz and F. Louchet, Scripta Materialia 43, 69 (2000)
DOI: 10.1016/S1359-6462(00)00367-5
Google Scholar
[28]
S. C. Deevi , V. K. Sikka , B. J. Inkson and R. W. Cahn, Scripta Materialia 36, 899 (1997). doi:10.1016/S1359-6462(96)00497-6 [29] R.G. Baligidad, U. Prakash, A. Radhakrishna, and V.R. Rao, Scripta Materialia 36, 667 (1997)
DOI: 10.1016/S1359-6462(96)00340-5
Google Scholar
[31]
K. Schwarz, P. Blaha and G. K. H. Madsen, Computer Physics Communications 147, 71 2002); K. Schwarz and P. Blaha, Computational Materials Science 28, 259 (2003)
DOI: 10.1016/S0010-4655(02)00206-0
Google Scholar
[33]
K. Schwarz, Journal of Solid State Chemistry 176, 319 (2003)
DOI: 10.1016/S0022-4596(03)00213-5
Google Scholar
[34]
P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)
DOI: 10.1103/PhysRev.136.B864
Google Scholar
[36]
P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology, (1997). P. laha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990)
DOI: 10.1016/0010-4655(90)90187-6
Google Scholar
[38]
Y. A. Chang, L. M. Pike, C. T. Liu, A. R. Bilbrey, and D. S. Stone, Intermetallics 15, 107 1993)
DOI: 10.1016/0966-9795(93)90028-T
Google Scholar
[40]
H. -E. Schaefer, K. Frenner, and R. Würschum, Intermetallics 7, 277 (1999)
DOI: 10.1016/S0966-9795(98)00121-6
Google Scholar
[41]
M.J. Mehl, D.J. Singh and D.A. Papaconstantopoulos, Mater. Sci. Eng. A 170, 49 (1993)
DOI: 10.1016/0921-5093(93)90368-O
Google Scholar
[44]
S. H. Yang, M. J. Mehl, D. A. Papaconstantopoulos and M. B. Scott, J. Phys.: Condens. Matter 4, 1895-1902 (2002)
DOI: 10.1088/0953-8984/14/8/317
Google Scholar
[5]
S.C. Deevi, P.J. Maziasz, and V.K. Sikka, R.W. Cahn (Eds.), Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM International, Metals Park, OH, 1997
DOI: 10.1016/S0079-6425(97)00014-5
Google Scholar
[7]
J. Bogner, W. Steiner, M. Reissner, P. Mohn, P. Blaha, K. Schwarz, R. Krachler, H. Ipser, and B. Sepiol, Phys. Rev. B 58, 14922 (1998)
DOI: 10.1103/PhysRevB.58.14922
Google Scholar
[16]
J. Wolff, M. Franz, A. Broska, B. Khler, and Th. Hehenkamp, Mater. Sci. Eng. A239-240, 213 (1997)
DOI: 10.1016/S0921-5093(97)00584-4
Google Scholar
[18]
A-S. Gay, A. Fraczkiewicz, and M. Biscondi, Mechanisms of the intergranular segregation of boron in (B2) FeAl alloys, Materials Science Forum, 294-296 (1999)
DOI: 10.4028/www.scientific.net/MSF.294-296.453
Google Scholar
[24]
N. I. Medvedeva, Yu. N. Gornostyrev, D. L. Novikov, O. N. Mryasov, and A. J. Freeman, Acta Materialia 46, 3433 (1998)
DOI: 10.1016/S1359-6454(98)00042-1
Google Scholar
[31]
K. Schwarz, P. Blaha and G. K. H. Madsen, Computer Physics Communications 147, 71 (2002); K. Schwarz and P. Blaha, Computational Materials Science 28, 259 (2003)
DOI: 10.1016/S0010-4655(02)00206-0
Google Scholar
[36]
P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology, (1997). P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990)
DOI: 10.1016/0010-4655(90)90187-6
Google Scholar
[38]
Y. A. Chang, L. M. Pike, C. T. Liu, A. R. Bilbrey, and D. S. Stone, Intermetallics 15, 107 (1993)
DOI: 10.1016/0966-9795(93)90028-T
Google Scholar
[40]
H. -E. Schaefer, K. Frenner, and R. Wrschum, Intermetallics 7, 277 (1999). doi:10.1016/S0966-9795(98)00121-6 [44] S. H. Yang, M. J. Mehl, D. A. Papaconstantopoulos and M. B. Scott, J. Phys.: Condens. Matter 14, 18951902 (2002)
DOI: 10.1088/0953-8984/14/8/317
Google Scholar