Diffusion Process Simulations - An Overview of Different Approaches

Article Preview

Abstract:

Some different approaches to diffusion process simulations are briefly presented. Their varying areas of applicability are discussed. Example simulations using the phase-field method, the DICTRA software, and random-walk based approaches are presented.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 233-234)

Pages:

97-114

Citation:

Online since:

December 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Stearn, A.E., Eyring, H., Absolute rates of solid reactions: diffusion, J. Phys. Chem., Vol. 44, pp.955-980, 1940. 16.

DOI: 10.1021/j150404a001

Google Scholar

[2] Bardeen, J., Diffusion in binary alloys, Phys. Rev., Vol. 76, pp.1403-1405, (1949).

DOI: 10.1103/physrev.76.1403

Google Scholar

[3] Darken, L.S., Formal basis of diffusion theory, in: Atom movements, American Society for Metals, pp.1-25, (1951).

Google Scholar

[4] Fick, A., Ueber Diffusion, Ann. Phys. Chem., Vol. 94, pp.59-86, 1855.

Google Scholar

[5] Onsager, L., Theories and problems of liquid diffusion, Ann. N.Y. Acad. Sci., Vol. 46, pp.241-265, (1945).

Google Scholar

[6] Kirkendall, E.O., Diffusion of zinc in alpha brass, Trans. AIME, Vol. 147, pp.104-110, (1942).

Google Scholar

[7] H¨oglund, L., ˚Agren, J., Analysis of the Kirkendall effect, marker migration and pore formation, Acta Mater., Vol. 49, pp.1311-1317, (2001).

DOI: 10.1016/s1359-6454(01)00054-4

Google Scholar

[8] Strandlund, H., Larsson, H., Prediction of Kirkendall shift and porosity in binary and ternary diffusion couples, Acta Mater., Vol. 52, pp.4695-4703, (2004).

DOI: 10.1016/j.actamat.2004.06.039

Google Scholar

[9] Andersson, J.O., ˚Agren, J., Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys., Vol. 72, pp.1350-1355, (1992).

Google Scholar

[10] Gardiner, C.W., Handbook of Stochastic Methods, 2nd Edition, Springer, (1985).

Google Scholar

[11] Larsson, H., ˚Agren, J., A random-walk approach to diffusion controlled growth, Scripta Mater., Vol. 49, pp.521-526, (2003).

DOI: 10.1016/s1359-6462(03)00364-6

Google Scholar

[12] Larsson, H., ˚Agren, J., A random-walk approach to diffusion controlled growth II: a distribution function solution, Scripta Mater., Vol. 51, pp.137-140, (2004).

DOI: 10.1016/j.scriptamat.2004.03.038

Google Scholar

[13] Manning, J.R., Cross terms in the thermodynamic diffusion equations for multicomponent alloys, Met. Trans., Vol. 1, pp.499-505, (1970).

DOI: 10.1007/bf02811561

Google Scholar

[14] Christian, J.W., The Theory of Transformations in Metals and Alloys, Pergamon, (2002).

Google Scholar

[15] Bardeen, J., Herring, C., Diffusion in alloys and the Kirkendall effect, in: Atom movements, American Society for Metals, pp.87-111, (1951).

Google Scholar

[16] Odqvist, J., Deviation from Local Equilibrium During the Austenite to Ferrite Transformation in Steel, Doctoral Thesis1, The Royal Institute of Technology, (2003).

Google Scholar

[17] Stefan, J., ¨Uber einige Probleme der Theorie der W¨armeleitung, Sitzungber. Kaiser. Akad. Wiss. Wien, Math. -Naturw., Vol. 98, pp.473-484, 1889.

Google Scholar

[18] Cahn, J.W., Hilliard, J.E., Free energy of a non-uniform system, I: Interfacial free energy, J. Chem. Phys., Vol. 28, pp.258-267, (1957).

Google Scholar

[19] Allen, S.M., Cahn, J.W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., Vol. 27, pp.1085-1095, (1979).

DOI: 10.1016/0001-6160(79)90196-2

Google Scholar

[20] Loginova, I., ˚Agren, J., Amberg, G., On the formation of Widmanst¨atten ferrite in binary Fe-C - phase field approach, Acta Mater., Vol. 52, pp.4055-4063, (2004).

DOI: 10.1016/j.actamat.2004.05.033

Google Scholar

[21] Loginova, I., Odqvist, J., Amberg, G., ˚Agren, J., The Phase-field Approach and Solute Drag Modeling of the Transition to Massive γ → α Transformation in Binary Fe-C Alloys, Acta Mater., Vol. 51, pp.1327-1339.

DOI: 10.1016/s1359-6454(02)00527-x

Google Scholar

[22] Hillert, M., Solute drag, solute trapping and diffusional dissipation of Gibbs energy, Acta Mater., Vol. 47, pp.4481-4505, (1999).

DOI: 10.1016/s1359-6454(99)00336-5

Google Scholar

[23] Hillert, M., Retternmayr, M., Deviation from local equilibrium at migrating phase interfaces, Acta Mater., Vol. 51, pp.2803-2809, (2003).

DOI: 10.1016/s1359-6454(03)00085-5

Google Scholar

[24] Saunders, N., Miodownik, A.P., CALPHAD, Calculation of Phase Diagrams, A Comprehensive Guide, Pergamon, (1998).

Google Scholar

[25] Sundman B., Jansson, B, Andersson, J-O, The Thermo-Calc Databank System, CALPHAD, Vol. 9, pp.153-190, (1985).

DOI: 10.1016/0364-5916(85)90021-5

Google Scholar

[26] Chen, Q., Engstr¨om A., H¨oglund, L., Strandlund, H., Sundman, B., Thermo-Calc Program Interface and Their Applications - Direct Insertion of Thermodynamic and Kinetic Data into Modelling of Materials Processing, Structure and Property, Materials Science Forum, Vols. 475- 479, pp.3145-3148, (2005).

DOI: 10.4028/www.scientific.net/msf.475-479.3145

Google Scholar

[27] Hertz J., Krogh A., Palmer, R.G., Introduction to the theory of neural computations, AddisonWesley, (1992).

Google Scholar

[28] Strandlund H., High-speed thermodynamic calculations for kinetic simulations, Comp. Mater. Sci., Vol. 29, pp.187-194, (2004).

DOI: 10.1016/j.commatsci.2003.09.001

Google Scholar

[29] Strandlund, H., Development of an Interface between Thermo-Calc and Matlab, Report, TRITA-NA-E0050, The Royal Institute of Technology, (2000).

Google Scholar

[30] Son, Y-H., Morral, J.E., The Effect of Composition on Marker Movement and Kirkendall Porosity in Ternary Alloys, Met. Trans. A, Vol. 20A, pp.2299-2303, (1989).

DOI: 10.1007/bf02666665

Google Scholar

[31] Matan, N., Winand, H.M.A., Carter, P., Karunaratne, M., Bogdanoff, P.D., Reed, R.C., A coupled thermodynamic/kinetic model for diffusional processes in superalloys, Acta Mater., Vol. 46, pp.4587-4600, (1998).

DOI: 10.1016/s1359-6454(98)00142-6

Google Scholar

[32] Nesbitt, J.A., Heckel, R.W., Interdiffusion in Ni-rich, Ni-Cr-Al alloys at 1100 and 1200◦C: Part I. Diffusion paths and microstructures, Met. Trans. A, Vol. 18A, pp.2061-2073, (1987).

DOI: 10.1007/bf02647078

Google Scholar

[33] Darken, L.S., Diffusion of carbon in austenite with a discontinuity in composition, Trans. AIME, Vol. 180, pp.430-438, (1948).

Google Scholar

[34] Tiaden, J., Nestler, B., Diepers, H-J., Steinbach, I., The multiphase-field model with an integrated concept for modelling solute diffusion, Physica D, vol. 115D, pp.73-86, (1998).

DOI: 10.1016/s0167-2789(97)00226-1

Google Scholar

[35] Engstr¨om, A., H¨oglund, L., ˚Agren, J., Computer simulation of diffusion in multiphase systems, Met. Mat. Trans. A, Vol. 25A, pp.1127-1134, (1994).

Google Scholar

[36] Lord Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of a medium, Phil. Mag., Vol. 34, pp.481-502, 1892.

Google Scholar

[37] Borgenstam, A., Engstr¨om, A., H¨oglund, L., ˚Agren, J., DICTRA, a tool for simulation of diffusional transformations in alloys, J. Phase Eq., Vol. 21, pp.269-280, 2000. This article was processed using the LATEX macro package with TTP style.

DOI: 10.1361/105497100770340057

Google Scholar