Analytical Studies of Diffusion by the Dissociative Mechanism in the Case of a Foreign Atom Source

Article Preview

Abstract:

The analytical treatment of dissociative diffusion by using the matched perturbation method given in the literature deals with a virtually infinite foreign-atom source producing a constant^concentration at the boundary. In this paper, a new mathematical model is developed for analysing the dissociative diffusion of the solute atoms in the case of finite-source conditions. The mathematical model combines the reaction-diffusion equations which govern solute atom diffusion by the dissociative mechanism and the boundary condition expressing the fact that the rate at which solute leaves the source is always equal to that at which it enters the sheet over the surface x=0. Solutions obtained by applying the matched perturbation method and their comparison with those of the numerical study are also presented in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 233-234)

Pages:

15-28

Citation:

Online since:

December 2004

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Wenwer, N.A. Stolwijk, H. Mehrer, Z. Metallkd. 80 (1989) 205.

Google Scholar

[2] B. Tuck, M.A. Kadhim, J. Mater. Sci. 7 (1972) 585.

Google Scholar

[3] N.A. Stolwijk, W. Frank, J. Hölzl, S.J. Pearton, E.E. Haller, J. Appl. Phys. 57 (1985) 5211.

Google Scholar

[4] N.A. Stolwijk, F. Wenwer, H. Bracht, H. Meher, in: Inter. Conf. Diff. in Mat., Aussois (France), (1989).

Google Scholar

[5] W.K. Warburton, D. Turnbull, in: A.S. Nowick, J.J. Burton (Eds), Diffusion in Solids, Academic Press, New York, 1975, p.171.

Google Scholar

[6] Chr. Herzig, Dimeta-82, Diffus. Defect Monogr. Ser. 7 (1983) 23.

Google Scholar

[7] A. Menai, H. Amenzou, G. Moya, J. Bernardini, Acta Matall. Mater. 42 (1994) 4049.

Google Scholar

[8] G. Moya, X.H. Li, A. Menai, E.L.M. Kherraz, H. Amenzou, J. Bernardini, P. Moser, Mater. Sci. Forum 175-178 (1995) 457.

DOI: 10.4028/www.scientific.net/msf.175-178.457

Google Scholar

[9] A. Benmakhlouf and A. Menai, Alg. J. Adv. Mater. Vol. 3 (1999) 39.

Google Scholar

[10] A. Hasnaoui, A. Benmakhlouf, A. Houmada, J.K. Naciri and A. Menai, App. Surf. Sci. 162 (2000) 100.

Google Scholar

[11] G. Edelin, Phys. Status Solidi. B 98, (1980) 699.

Google Scholar

[12] A.V. Vaisleib and M.G. Goldiner, Phys. Lett. A. 146 (1990) 421.

Google Scholar

[13] N.A. Stolwijk, Phys. Stat. Sol. B. 157 (1990) 107.

Google Scholar

[14] A. Benmakhlouf, Defect and Diffusion Forum, in press, (2004) 233-234, 1.

Google Scholar

[15] M.D. Sturge, Proc. Phys. Soc. London 73, 297 (1959).

Google Scholar