Atomic Migration as a Mechanism of Superstructure Formation in Intermetallic Compounds

Article Preview

Abstract:

“Order-order” relaxations driven by atomic migration in superstructures proceed in nonsteady- state of a system, which relaxes to the equilibrium atomic configuration. Hence, the corresponding studies are complementary to standard steady-state diffusion investigations. Two time scales operating in “order-order” relaxations in L12-ordered (Ni3Al) and L10-ordered (FePd, FePt) binary intermetallics were experimentally observed. On the other hand, in B2-ordered NiAl – known of a giant vacancy concentration, “order-order” relaxations appeared surprisingly slow. Definite relationships between the activation energies for diffusion ( ) D A E and “order-order” relaxations ( ) O O A E − were revealed: ( ) D A E < ( ) O O A E − in L12-type superstructure; ( ) D A E ³ ( ) O O A E − in L10- and in B2-type superstructures. Corresponding simulation studies elucidated the specific atomistic mechanism of the processes. It has been shown that different time scales active in “order-order” relaxations in L12 and L10-ordered systems follow from specific atomic-jump correlations, which result from non-steady-state conditions and particular superlattice geometries: the availability of easy diffusion channels. A model of “order-order” kinetics in NiAl as controlled by a triple-defect mechanism is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

609-620

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Kozubski, Prog. Mater. Sci. Vol. 41 (1997), p.1.

Google Scholar

[2] R. Kozubski, D. Kmieć, E. Partyka, and M. Danielewski, Intermetallics Vol. 11 (2003), p.897.

DOI: 10.1016/s0966-9795(03)00099-2

Google Scholar

[3] L. Messad, S. Czekaj, H. Bouzar, M. Zemirli, V. Pierron-Bohnes, M.C. Cadeville, R. Kozubski, Colloque Scientifique Algéro-Français TAM-MAT 2003 Les Matériaux émergents, Tamanrasset, Algeria, (2003).

Google Scholar

[4] R. Kozubski, S. Czekaj, M. Kozłowski, E. Partyka, K. Zapała, J. Alloys and Compounds - in press.

Google Scholar

[5] P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, W. Pfeiler, Phys. Rev. B Vol. 63 (2001), p.174109.

Google Scholar

[6] P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, C. Massobrio, W. Pfeiler, Mater. Sci. Eng. A Vol. 324 (2002), p.11.

DOI: 10.1016/s0921-5093(01)01275-8

Google Scholar

[7] P. Oramus, M. Kozłowski, R. Kozubski. V. Pierron-Bohnes, M.C. Cadeville, W. Pfeiler, Mater. Sci. Eng. A Vol. 365 (2004), p.165.

DOI: 10.1016/j.msea.2003.09.023

Google Scholar

[8] P. Oramus, C. Massobrio, M. Kozłowski, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, W. Pfeiler, Comput. Mater. Sci. Vol. 27 (2003), p.186.

DOI: 10.1016/s0927-0256(02)00444-5

Google Scholar

[9] R. Kozubski, M.C. Cadeville, J. Phys.F. : Met. Phys. Vol. 18 (1988), p.2569.

Google Scholar

[10] R. Kozubski, J. Sołtys, M.C. Cadeville, V. Pierron-Bohnes, T.H. Kim, P. Schwander, J.P. Hahn, G. Kostorz , J. Morgiel, Intermetallics Vol. 1 (1993), p.139.

DOI: 10.1016/0966-9795(93)90009-k

Google Scholar

[11] R.L. Rossiter The Electrical Resistivity of Metals and Alloys (Cambridge University Press, Cambridge, UK 1987).

Google Scholar

[12] St. Frank, U. Södervall, Chr. Herzig, Phys. Stat. Sol. (b) Vol. 191 (1995), p.45.

Google Scholar

[13] St. Frank, S.V. Divinski, U. Södervall, Chr. Herzig, Acta Mater. Vol. 49 (2001), p.1399.

Google Scholar

[14] J. Fillon, D. Calais, J. Phys. Chem. Solids Vol. 38 (1977) 81.

Google Scholar

[15] J. Kučera, B. Million, phys. stat. sol. (a) 31 (1975), p.275.

Google Scholar

[16] Y. Nose, T. Ikeda, H. Nakajima, K. Tanaka, H. Numakura, Mater. Res. Soc. Symp. Proc. Vol. 753 (2003), p. BB5. 36. 1.

Google Scholar

[17] Kulovits, W.A. Soffa, W. Püschl, W. Pfeiler, Mater. Res. Soc. Symp. Proc. Vol. 753 (2003), p. BB5. 37. 1.

Google Scholar

[18] R. Kozubski, J. Sołtys, M.C. Cadeville, J. Phys.: Condensed Matter. Vol. 2 (1990), p.3451.

Google Scholar

[19] R. Kozubski, M. Kozłowski, V. Pierron-Bohnes, W. Pfeiler, Z. Metallkde. - submitted for publication.

Google Scholar

[20] T. Mohri, C. Ying, Mater. Trans. 43 (2002) 2104.

Google Scholar

[21] T. Mehaddene, E. Kentzinger, B. Hennion, K. Tanaka, H. Numakura, A. Marty, V. Parasote, M.C. Cadeville, M. Zemirli, V. Pierron-Bohnes, Phys. Rev. B Vol. 69 (2004), p.024304.

DOI: 10.1103/physrevb.69.024304

Google Scholar

[22] F.E. Spada, F.T. Parker, C.L. Platt, J.K. Howard, J. Appl. Phys. Vol. 94 (2003), p.5123.

Google Scholar