Aging of Oxides under Irradiation

Article Preview

Abstract:

In this conference we try to give a survey of the main characteristics of aging of oxides under irradiation in the perspective of the recent developments of the ab-initio modeling capabilities. After a brief recall of the relevant radiation – matter interactions, we present the main aspects of materials aging under irradiation, I) defect creation either elastically or inelastically, ii) microstructure evolution due to defect elimination, iii) radiation enhanced diffusion, iv) phase changes under irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

621-634

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. P. Pells: J.M.N. 155-157 (1988), 67.

Google Scholar

[2] S. J. Zinkle and C. Kinoshita: J. M. N. 251 (1997), 200.

Google Scholar

[3] E. Alves, M. F. da Silva, J. C. Soares, et al.: Nuc. Inst. Methods Phys. Res. B 166 (2000), 183.

Google Scholar

[4] G. P. Pells and D. C. Phillips: J. Mat. Nuc. 80 (1979), 207.

Google Scholar

[5] G. P. Pells: Rad. Eff. 64 (1982), 71.

Google Scholar

[6] T. Yoshiie, H. Iwanaga and N. Shibata: Phil. Mag. 40 (1979), 297.

Google Scholar

[7] G. P. Summers, G. S. White, K. H. Lee, et al.: Phys. Rev. B 21 (1980), 2578.

Google Scholar

[8] J. Soullard: J. Nuc. Mater. 135 (1985), 190.

Google Scholar

[9] J. M. Cowley: Acta Cryst. 21 (1966), 192.

Google Scholar

[10] J. C. Pigg, A. K. Garrison and S. B. Austermann: J. Nuc. Mater. 49 (1973), 67.

Google Scholar

[11] N. D. Morelon and D. Ghaleb: (Commissariat à l'Energie Atomique, 2000).

Google Scholar

[12] B. Park, W. J. Weber and L. R. Corrales: N. I. M. B 166 (2000), 357.

Google Scholar

[13] R. E. Williford, R. Devanathan and W. J. Weber: N. I. M. B 141 (1998), 94.

Google Scholar

[14] J. P. Crocombette and D. Ghaleb: J. M. N. 257 (1998), 282.

Google Scholar

[15] E. A. Kotomin and A. I. Popov: N.I.M. B, 141 (1998), 1.

Google Scholar

[16] A. K. Rappe and W. A. Goddard III: J. Phys. Chem. 95 (1991), 3358.

Google Scholar

[17] F. H. Streitz and J. W. Mintmire: Phys. Rev. B 50 (1994), 11996.

Google Scholar

[18] G. Lucas and L. Pizzagalli: N. I. M. B under press (2004).

Google Scholar

[19] M. J. Norgett, M. T. Robinson and I. M. Thorens: Nucl. Eng. Design 33 (1974), 50.

Google Scholar

[20] R. S. Averback, Benedek, R., Merkle, K.L., Sprinkle, J., Thompson, L.J.: J. Nuc. Mater. 113 (1983), 211.

Google Scholar

[21] P. Agnew: N. I. M. B 65 (1992), 305.

Google Scholar

[22] R. S. Averback, R. Benedek and K. L. Merkle: Phys. Rev. B 18 (1978), 4156.

Google Scholar

[23] Y. e. a. Chen: in Radiation effects and tritium technology for fusion reactors, edited by J. S. Watson, Wiffen, F.W. (USERDA, Gatlinburg, 1975), Vol. 2, p.492.

DOI: 10.1088/0029-5515/16/1/026

Google Scholar

[24] F. W. j. Clinard and L. W. Hobbs: in Modern problems in condensed matter physics, edited by V. M. Agranovich, Maradudin, A.A. (North-Holland, Amsterdam, 1986), Vol. 13.

Google Scholar

[25] D. Pooley: Proc. Phys. Soc. 87 (1966), 245.

Google Scholar

[26] K. Tanimura, T. Tanaka and N. Itoh: Phys. Rev. letters 51 (1983), 423.

Google Scholar

[27] M. L. Knotek and P. J. Feibelman: Phys. Rev. Letters 40 (1978), 964.

Google Scholar

[28] J. F. DeNatale and D. G. Howitt: N.I.M. B 1 (1984), 489.

Google Scholar

[29] V. Aubin, D. Caurant, D. Gourier, et al.: in Radiation Effects and ion beam processing of Materials, MRS Symp. Proc., 2004).

Google Scholar

[30] B. Boizot, G. Petite, D. Ghaleb, et al.: J. Non Cryst. Sol. 243 (1999), 268.

Google Scholar

[31] T. E. Tsai and D. L. Griscom: Phys. Rev. L. 67 (1991), 2517.

Google Scholar

[32] H. Hosono, H. Kawasoe and N. Matsunami: Phys. Rev. Lett. 80 (1998), 317.

Google Scholar

[33] A. L. Shluger, J. L. Gavartin, M. A. Szymanski, et al.: Nuc. Inst. Methods Phys. Res. B 166- 167 (2000), 1.

Google Scholar

[34] G. Roma, Y. Limoge and S. Baroni: Phys. Rev. Letters 86 (2001), 4564.

Google Scholar

[35] Y. G. Jin and C. K.J.: Phys. Rev. Letters 86 (2001), 1793.

Google Scholar

[36] J. C. Bourgoin and J. W. Corbett: Rad. Eff. 36 (1978), 157.

Google Scholar

[37] G. B. Krefft: J. Vac. Sci. Technol. 14 (1977), 533.

Google Scholar

[38] S. Clement and E. R. Hodgson: Phys. Rev. B 36 (1987), 3359.

Google Scholar

[39] R. Devanathan, K. E. Sickafus, W. J. Weber, et al.: J.M.N. 253 (1998), 113.

Google Scholar

[40] K. Yasuda, C. Kinoshita, M. Ohmura, et al.: N. I. M. B 166-167 (2000), 107.

Google Scholar

[41] J. Song, L. R. Corrales, G. Kresse, et al.: Phys. Rev. B 64 (2001), 134102.

Google Scholar

[42] M. Petersilka, U. J. Gossmann and E. K. U. Gross: Phys. Rev. L. 76 (1996), 1212.

Google Scholar

[43] S. Ismail-Beigi and S. G. Louie: Phys. Rev. L. 90 (2003), 076401.

Google Scholar

[44] A. Y. Stathopoulos and G. P. Pells: Phil. Mag. A 47 (1983), 381.

Google Scholar

[45] D. G. Howitt and T. E. Mitchell: Phil. Mag. A 44 (1981), 229.

Google Scholar

[46] R. A. Youngman, L. W. Hobbs and T. E. Michell: J. de Phys. 41 (1980), 227.

Google Scholar

[47] T. Shikama and G. P. Pells: Phil. Mag. A 47 (1983), 369.

Google Scholar

[48] G. P. Pells and T. Shikama: Phil. Mag. A 48 (1983), 779.

Google Scholar

[49] L. W. Hobbs and F. W. Clinard: J. de Phys. 41-C6 (1980), 232.

Google Scholar

[50] S. J. Zinckle: N. I. M. B 91 (1994), 234.

Google Scholar

[51] F. W. Clinard, G. F. Hurley and L. W. Hobbs: J. Nucl. Mat. 108-109 (1982), 655.

Google Scholar

[52] S. J. Zinckle: J. Nucl. Mat. 219 (1995), 113.

Google Scholar

[53] K. Yasuda, C. Kinoshita, R. Morisaki, et al.: Phil. Mag. A 78 (1998), 583.

Google Scholar

[54] C. Kinoshita, K. Hayashi and S. Kitajima: N. I. M. B 1 (1984), 209.

Google Scholar

[55] K. Yasuda and C. Kinoshita: N. I. M. B 191 (2002), 55.

Google Scholar

[56] N. Yoshida and M. Kiritani: J. Phys. Soc. Jap. 35 (1973), 1418.

Google Scholar

[57] M. Kiritani, N. Yoshida, H. Takata, et al.: J. Phys. Soc. Jap. 38 (1975), 1677.

Google Scholar

[58] K. Yasuda, C. Kinoshita, S. Matsumura, et al.: J. Nucl. Mat. 319 (2003), 74.

Google Scholar

[59] A. I. Ryazanov, K. Yasuda, C. Kinoshita, et al.: J. Nucl. Mat. 323 (2003), 372.

Google Scholar

[60] A. I. Ryazanov and C. Kinoshita: N. I. M. B 191 (2002), 65.

Google Scholar

[61] J. L. Bocquet, G. Brebec and Y. Limoge: in Physical Metallurgy, edited by R. W. Cahn, Haasen, P. (North Holland, New York, 1996), p.535.

DOI: 10.1016/b978-044489875-3/50012-0

Google Scholar

[62] P. Sizmann: J. Nuc. Mater. 69 (1968), 386.

Google Scholar

[63] A. J. Barcz, B. M. Paine and M. A. Nicolet: J. APP Phys. 44 (1984), 45.

Google Scholar

[64] E. A. Cooper and M. Nastasi: Appl. Phys. Lett. 64 (1994), 2958.

Google Scholar

[65] A. I. V. Sambeek, R. S. Averback, C. P. Flynn, et al.: Mat Res. Soc. Symp. Proc. 373 (1995), 293.

Google Scholar

[66] P. W. M. Jacobs and E. A. Kotomin: Phil. Mag. A 68 (1993), 695.

Google Scholar

[67] M. H. Yang and C. P. Flynn: in Mat. Res. Soc., 1993), p.837.

Google Scholar

[68] A. De-Vita, M. J. Gillan, J. S. Lin, et al.: Phys. Rev. Letters 68 (1992), 3319.

Google Scholar

[69] I. Biron and A. Barbu: N. I. M. B 32 (1988), 279.

Google Scholar

[70] G. Martin and P. Bellon: Sol. State Phys. 53 (1997), 1.

Google Scholar

[71] G. W. Groves and M. E. Fine: J. Appl. Phys. 35 (1964), 3587.

Google Scholar

[72] T. R. Anthony: in Radiation induced voids in metals and alloys, edited by J. W. Corbett, Ianiello, L.C. (U.S. Atomic Energy Cimission, 1971), p.630.

Google Scholar

[73] A. Barbu and G. Martin: Sol. State Phenom. 30 (1993), 179.

Google Scholar

[74] A. Torrisi, G. Marletta, A. Licciardello, et al.: N. I. M. B 32 (1988), 283.

Google Scholar

[75] H. Hosono and N. Matsunami: N. I. M. B 141 (1998), 566.

Google Scholar

[76] D. Simeone, J. L. Bechade, D. Gosset, et al.: J. Nuc. Mater. 281 (2000), 171.

Google Scholar

[77] K. E. Sickafus, H. Matzke, T. Hartmann, et al.: J. M. N. 274 (1999), 66.

Google Scholar

[78] D. Simeone, G. Baldinozzi, D. Gosset, et al.: Phys. Rev. B 70 (2004), 134116.

Google Scholar

[79] K. E. Sickafus, A. C. Larson, N. Yu, et al.: J.M.N. 219 (1995), 128.

Google Scholar

[80] D. Simeone, C. Dodane-Thiriet, D. Gosset, et al.: J. M. N. 300 (2002), 151.

Google Scholar

[81] M. Ishimaru, I. A. Afanasyev-Charkin and K. E. Sickafus: App. Phys. Letters 76 (2000), 2556.

Google Scholar

[82] K. E. Sickafus: J. Nuc. Mater. 312 (2003), 111.

Google Scholar

[83] C. E. Jesurum, V. Pulim and L. W. Hobbs: N. I. M. B 141 (1998), 25.

Google Scholar

[84] F. L. Vook and H. J. Stein: Rad. Eff. 2 (1969), 23.

Google Scholar

[85] M. L. Swanson, J. R. Parson and C. W. Hoelke: Rad. Eff. 9 (1971), 249.

Google Scholar

[86] J. R. Parson: Phil. Mag. 12 (1965), 1159.

Google Scholar

[87] F. F. Morehead and B. L. Crowder: Rad. Eff. 6 (1970), 27.

Google Scholar

[88] W. J. Weber: N. I. M. B 166 (2000), 98.

Google Scholar

[89] L. W. Hobbs: N. I. M. B 91 (1994), 30.

Google Scholar

[90] L. W. Hobbs and M. R. Pascucci: J. De Phys. 41 (1980), 237.

Google Scholar

[91] N. Yu, K. E. Sickafus and M. Nastasi: Mat Res. Soc. Symp. Proc. 373 (1995), 401.

Google Scholar

[92] Y. Limoge, A. Rahman and S. Yip: Mat. Scie. Forum 15 (1987), 1421.

Google Scholar

[93] W. J. Weber, R. C. Ewing, C. R. A. Catlow, et al.: J. Mater. Res. 13 (1998), 1434.

Google Scholar

[94] W. J. Weber, R. C. Ewing and A. Meldrum: J. M. N. 250 (1997), 147.

Google Scholar

[95] Y. Limoge, A. Rahman, H. Hsieh, et al.: J. Non Cryst. Sol. 99 (1988), 75.

Google Scholar

[96] M. Li and W. L. Johson: Phys. Rev. L. 70 (1993), 1120.

Google Scholar

[97] N. Q. Lam, P. R. Okamoto and M. Li: J. M. N. 251 (1997), 89.

Google Scholar

[98] Y. Limoge and A. Barbu: Phys. Rev. B 30 (1984), 2212.

Google Scholar

[99] K. E. Sickafus, L. Minervini, R. W. Grimes, et al.: Science 289 (2000), 748.

Google Scholar

[100] D. N. Seidman, R. S. Averback, P. R. Okamoto, et al.: Phys. Rev. Lett. 58 (1987), 900.

Google Scholar

[101] A. Meldrum, L. A. Boatner and R. C. Ewing: N. I. M. B 141 (1998), 347.

Google Scholar