Computer Simulation of Phase Decomposition in Magnetic Materials Based on the Phase-Field Method

Article Preview

Abstract:

During the last decade, the phase-field method has emerged across many fields in materials science as a powerful tool to simulate and predict complex microstructure evolutions. Since phase-field methodology has an ability to model complex microstructure changes quantitatively, it will be possible to search for the most desirable microstructure by using this method as a design simulation, i.e. through computer trial-and-error testing. In order to establish this methodology, the flexible quantitative modeling for various types of complex microstructure changes using the phase-field method must first be needed. In this study, as the typical examples for the modeling of the complex microstructure changes using phase-field method, recent simulation results for the diffusion controlled phase transformations and microstructure developments in magnetic materials are demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

593-602

Citation:

Online since:

April 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Koyama: Materia Japan, Vol. 42, (2003), p.397.

Google Scholar

[2] L-Q. Chen: Annu. Rev. Mater. Res., Vol. 32, (2002), p.113.

Google Scholar

[3] W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Annu. Rev. Mater. Res., Vol. 32, (2002), p.163.

Google Scholar

[4] M. Ode, S.G. Kim and T. Suzuki: ISIJ Int., Vol. 41, (2001), p.1076.

Google Scholar

[5] N. Saunders and A.P. Miodownik : CALPHAD, Pergamon, (1998).

Google Scholar

[6] Thermo-Calc (ver. M), Thermo Calc software AB.

Google Scholar

[7] A.G. Khachaturyan: Theory of Structural Transformations in Solids, Wiley and Sons, New York, (1983), p.198.

Google Scholar

[8] T. Mura: "Micromechanics of Defects in Solids (2nd Rev. ed. ), p.204, Kluwer Academic, (1991).

Google Scholar

[9] J.W. Cahn: J. App. Phys., Vol. 34, (1963), p.3581.

Google Scholar

[10] S. Chikazumi: Physics of Ferromagnetism (2nd ed. ), Oxford, (1997).

Google Scholar

[11] T. Koyama and H. Onodera: Trans. of the MRS-J, in printing.

Google Scholar

[12] J.E. Hilliard: in Phase Transformation, ed. by H.I. Aaronson, p.497, ASM, Metals Park, Ohio, (1970).

Google Scholar

[13] Metals data book, Japan Institute of Metals(ed. ), Maruzen, (1993).

Google Scholar

[14] T. Minowa, M. Okada and M. Homma, IEEE Trans. Mag., Vol. 16, (1980), p.529.

Google Scholar

[15] M. Okada,G. Thomas,M. Homma and H. Kaneko: IEEE Trans. Mag., Vol. 14, (1978), p.245.

Google Scholar

[16] T. Koyama and H. Onodera: Mater. Trans., Vol. 44(2003), p.1523.

Google Scholar

[17] Y.K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono: J. App. Phys., Vol. 95 (2004), p.2690.

Google Scholar

[18] D.H. Ping,M. Ohnuma,K. Hono,M. Watanabe,T. Iwasa and T. Masumoto: J. Appl. Phys., Vol. 90 (2001), p.4708.

Google Scholar

[19] K. Ullakko J.K. Huang, V.V. Kokorin and R.C. O'Handley: Scripta Mater. Vol. 36 (1997), p.1133.

Google Scholar

[20] T. Kakeshita and K. Ullako: MRS Bull. Vol. 27 (2002), p.105.

Google Scholar

[21] T. Koyama and H. Onodera: Mater. Trans., Vol. 44 (2003), p.2503.

Google Scholar

[22] K.H.J. Buschow: in Handbook of Magnetic Materials, edited by K. H. J. Buschow, Elsevier, North-Holland-Amsterdam, Vol. 10 (1997), p.463.

Google Scholar

[23] X.Y. Xiong, T. Ohkubo, T. Koyama, K. Ohashi, Y. Tawara, and K. Hono: Acta Mater., Vol. 52 (2004), p.737.

Google Scholar