Hardness of Nanostructured Al-Zn, Al-Mg and Al-Zn-Mg Alloys Obtained by High-Pressure Torsion

Article Preview

Abstract:

Microstructure and hardness of ternary Al–Zn–Mg alloys were studied both in as cast state and after high pressure torsion (HPT) with 5 torsions (shear strain about 6). The size of (Al) grains and of reinforcing second phase precipitates decreases drastically after HPT reaching nanometer range. During HPT, the Zn- and Mg-rich supersaturated (Al) solid solution decomposes and reaches the equilibrium state corresponding to the room temperature. In the as cast state the hardness of the supersaturated solid solutions increases with increasing Zn and Mg content due to the solid-solution hardening. However, after HPT the work hardening and Hall-Petch hardening due to the decreasing grain size competes with softening due to the decomposition of a supersaturated solid solution. In the net effect, the severe plastic deformation results in softening of ternary Al–Zn– Mg alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-160

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Valiev: Nature Mater. Vol. 3 (2004), p.511; Nature Vol. 419 (2002), p.887.

Google Scholar

[2] B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov and R.Z. Valiev: Acta Mater. Vol. 52 (2004), p.4469.

DOI: 10.1016/j.actamat.2004.06.006

Google Scholar

[3] A.A. Mazilkin, O.A. Kogtenkova, B.B. Straumal, R.Z. Valiev and B. Baretzky: Def. Diff. Forum Vols. 237-240 (2005), p.739.

DOI: 10.4028/www.scientific.net/ddf.237-240.739

Google Scholar

[4] Ch. Xu, M. Furukawa, Z. Horita and T.G. Langdon: Acta Mater. Vol. 53 (2005), p.749.

Google Scholar

[5] G.K. Williamson and W.H. Hall: Acta Metall. Vol. 1 (1953), p.22.

Google Scholar

[6] T. Ungár and A. Borbely: Appl. Phys. Lett. Vol. 69 (1996), p.3173.

Google Scholar

[7] T. Ungár, S. Ott, P. Sanders, A. Borbely and J.R. Weertman: Acta Mater. Vol. 46 (1998), p.3693.

Google Scholar

[8] T.B. Massalski et al. eds: Binary Alloy Phase Diagrams (ASM International, Materials Park 1993).

Google Scholar

[9] J. Meissner: Zt. Metallkd. Vol. 50 (1959), p.207.

Google Scholar

[10] F. Pfaff: Zt. Metallkd. Vol. 53 (1962), p.411.

Google Scholar

[11] E.O. Hall: Proc. Phys. Soc. B Vol. 64 (1951), p.747.

Google Scholar

[12] N.J. Petch: J. Iron Steel Inst. Vol. 173 (1953), p.25.

Google Scholar

[13] N.L. Peterson and S.J. Rothman: Phys. Rev. B Vol. 1 (1970), p.3264.

Google Scholar

[14] I. Gödény, D.L. Beke and F.J. Kedves: Phys. Stat. Sol. (a) Vol. 13 (1972), p. K155.

DOI: 10.1002/pssa.2210130262

Google Scholar

[15] S.J. Rothman, N.L. Peterson, L.J. Nowicki and L.C. Robinson: Phys. Stat. Sol. B Vol. 63 (1974), K 29.

Google Scholar

[16] G. Saada: Acta Met. Vol. 9 (1961), p.965.

Google Scholar

[17] D.L. Beke, I. Gödény and F.J. Kedves: Phil. Mag. A Vol. 47 (1983), p.281.

Google Scholar

[18] D.L. Beke, I. Gödény and F.J. Kedves: Trans. Jap. Inst. Met. Suppl. Vol. 27 (1986), p.649.

Google Scholar

[19] P. Zieba, A. Pawlowski and W. Gust: Def. Diff. Forum Vol. 194 (2001), p.1759.

Google Scholar

[20] T. Fujita, H. Hasegawa, Z. Horita and T.G. Langdon: Def. Diff. Forum Vol. 194 (2001), p.1205.

Google Scholar

[21] T. Fujita, Z. Horita and T.G. Langdon: Phil. Mag A Vol. 82 (2002), p.2249.

Google Scholar