Shape of Moving Grain Boundary and its Influence on Grain Boundary Motion in Zinc

Article Preview

Abstract:

The migration of individual special [ ] 0 1 10 tilt grain boundary (GB) with Σ =15 and misorientation angle 29° in Zn bicrystal have been investigated. The stationary shape of migrating GB has been studied and the migration rate has been measured by optical microscopy in situ between 558 and 683 K using polarized light. In certain experimental runs the migrating GB is faceted and moves thermally activated. Its kinetics follows the Arrhenius type dependence despite the fact that shape of moving GB depends on temperature. After detachment from impurity cloud the [ ] 0 1 10 tilt GB migrates activationless in the temperature interval 618÷683 K. The detachment temperature is 618 K. The non-physically high value of the apparent migration activation enthalpy can appear due to the change of GB shape from faceted to smooth and back.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-188

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.W. Mullins: J. Appl. Phys. Vol. 27 (1956), p.900.

Google Scholar

[2] J. Von Neumann: in Metal Interfaces (American Society for Testing Materials, Cleveland 1952), p.108.

Google Scholar

[3] A.V. Antonov, Ch.V. Kopetskii, L.S. Shvindlerman and Ya.M. Mukovskii: phys. stat. sol. (a) Vol. 9 (1972), p.45.

Google Scholar

[4] V. Yu. Aristov, V.E. Fradkov and L.S. Shvindlerman: Sov. Phys. Solid State Vol. 22 (1980), p.1055.

Google Scholar

[5] J. Ch. Verhasselt, G. Gottstein, D.A. Molodov and L.S. Shvindlerman: Acta Mater. Vol. 47 (1999), p.887.

Google Scholar

[6] G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals. Thermodynamics, Kinetics, Applications (CRC Press, Boca Raton 1999).

DOI: 10.1201/9781420054361

Google Scholar

[7] V. Yu. Aristov, Ch.V. Kopeckii, V.G. Sursaeva and L.S. Shvindlerman: Sov. Phys. Dokl. Vol. 20 (1975), p.842.

Google Scholar

[8] Ch.V. Kopeckii, V.G. Sursaeva and L.S. Shvindlerman: Scripta Metall. Vol. 12 (1978), p.953.

Google Scholar

[9] Ch.V. Kopeckii, V.G. Sursaeva and L.S. Shvindlerman: Sov. Phys. Dokl. Vol. 23 (1978), p.137.

Google Scholar

[10] Ch.V. Kopetskiy, L.S. Shvindlerman and V.G. Sursaeva: Scr. Metall. Vol. 12 (1978), p.953.

Google Scholar

[11] Ch.V. Kopetskiy, V.G. Sursaeva and L.S. Shvindlerman: Sov. Phys. Solid State Vol. 21(1979), p.238.

Google Scholar

[12] K. Lücke, K. Detert: Acta Metall. Vol. 5 (1957), p.628.

Google Scholar

[13] K. Lücke and H. Stüwe: Acta Metall. Vol. 19 (1971), p.87.

Google Scholar

[14] B.B. Straumal, E. Rabkin, V.G. Sursaeva and A.S. Gornakova: Zt. Metallkd. Vol. 96 (2005), p.161 Prof. L. Paritskaya, Dr. V. Sursaeva, Prof. E. Glickman.

Google Scholar