Characteristics of Hydrogen Sorption, Solubility and Diffusivity in Graphites and Carbon Nanomaterials: Relevance to the On-Board Storage Problem

Article Preview

Abstract:

Results of experimental and theoretical investigations on hydrogen sorption by various carbon nanostructures, including fullerenes, single-walled and multi-walled nanotubes, nanofibers and nanographite-based composites are surveyed. Results of a thermodynamic analysis of the most significant experimental data are presented. The emphasis is placed on the studies reporting the extremum sorption parameters. The thermodynamic and kinetic (diffusion) parameters and equations describing the sorption processes are refined. The prospects of the applications of novel carbon nanomaterials for hydrogen storage in automotive industry are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-146

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.J. Maeland: Int. Sci. J. Alternative Energy & Ecology (1) (2001), p.19.

Google Scholar

[2] A.V. Eletskii: Physics Uspekhi Vol. 174 (2004), p.1191.

Google Scholar

[3] Yu.S. Nechaev and O.K. Alexeeva: Uspekhi Khimii Vol. 73 (2004), p.1308.

Google Scholar

[4] A.C. Dillon and M.J. Heben: Appl. Phys. A, Vol. 72 (2001), p.133.

Google Scholar

[5] G. Sverdrup: Proc. World Renewable Energy Congress VIII, Denver, CO, USA (2004) p.41.

Google Scholar

[6] Yu.S. Nechaev, D.V. Iourtchenko, T.N. Veziroglu: Ibid. (2004) p.56.

Google Scholar

[7] Yu.S. Nechaev: Int. Sci. J. Alternative Energy & Ecology (2) (2005), p.64.

Google Scholar

[8] C. Park, P.E. Anderson, A. Chambers et al.: J. Phys. Chem. B, Vol. 103 (1999), p.10572.

Google Scholar

[9] F.H. Yang F. and R.T. Yang. Carbon Vol. 40 (2002), p.437.

Google Scholar

[10] H. Atsumi, S. Tokura and M. Miyake. J. Nucl. Mater. Vol. 155-157 (1988), p.241.

Google Scholar

[11] S. Orimo, T. Matsushima, H. Fujii et al.: J. Appl. Phys., Vol. 90 (2001), p.1545.

Google Scholar

[12] K. Shindo, T. Kondo and Y. Sakurai. J. Alloys Comp. Vol. 372 (2004), p.201.

Google Scholar

[13] E.A. Denisov, T.N. Kompaniets, I.V. Makarenko et al.: Mater. Sci. Vol. 2 (2002), p.45.

Google Scholar

[14] M. Hirscher, M. Becher, M. Galuska et al.: J. Alloys Comp. Vol. 330-332 (2002), p.654.

Google Scholar

[15] H. Lee, Y. -S. Kang, S. -H. Kim, J. -Y. Lee. Appl. Phys. Lett. Vol. 80 (2002), p.577.

Google Scholar

[16] A.C. Dillon, K.M. Jones, T.A. Bekkedahl et al.: Nature, Vol. 386 (1997), p.377.

Google Scholar

[17] M. Shiraishi, T. Takenobu, M. Ata: Chem. Phys. Lett. Vol. 367 (2003), p.633.

Google Scholar

[18] R.A. Causey: J. Nucl. Mater. Vol. 162-164 (1989), p.151.

Google Scholar

[19] S. Orimo, A Züttel, L. Schlapbach et al.: J. Alloys Comp. Vol. 356-357 (2003), p.716.

Google Scholar

[20] I.O. Bashkin, V.E. Antonov, A.V. Bazhenov et al.: JETP Lett. Vol. 79 (2004), p.280.

Google Scholar

[21] M. Nielsen, J.P. McTague, W. Ellenson: J. de Phys. Vol. 38 (1977) p.4.

Google Scholar