Analysis of Interdiffusion and Intrinsic Diffusion in Multicomponent Alloys to Obtain Information about Diffusion Mechanisms

Article Preview

Abstract:

In this paper, we present and discuss some of the theoretical procedures that have been established recently for binary and ternary alloy systems for the purposes of analyzing chemical diffusion data (interdiffusion and intrinsic diffusion) alone and chemical diffusion data in combination with tracer diffusion data. Emphasis is put on extracting information about diffusion mechanisms by way of tracer correlation factors/vacancy-wind factors. Examples are taken from the intrinsic diffusion, interdiffusion and tracer diffusion data in the Ag-Cd and Ag-Cd-Zn, Fe-Ni-Cr and Cu-Fe-Ni alloy systems.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

237-246

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.J. Rothman in Diffusion in Crystalline Solids, edited by G.E. Murch and A.S. Nowick (Academic Press, Orlando, 1984) p.1.

Google Scholar

[2] I.V. Belova and G.E. Murch, Phil. Mag. Vol. 85 (2005), p.1191.

Google Scholar

[3] L. Höglund and J. Ågren, Acta Mater. Vol. 49 (2001), p.1311.

Google Scholar

[4] L.S. Darken: Trans. Am. Inst. Min. (Metall. ) Eng. Vol. 175 (1948), p.184.

Google Scholar

[5] J.R. Manning: Diffusion Kinetics for Atoms in Crystals (Van Nostrand, Princeton, 1968).

Google Scholar

[6] G E Murch and J C Dyre, CRC Critical Reviews Solid State and Materials Sc., Vol. 15 (1989), p.345.

Google Scholar

[7] I V Belova and G E Murch, Phil. Mag. A, Vol. 81 (2001), p.1749.

Google Scholar

[8] G.E. Murch and Z. Qin, Defect Diffusion Forum Vol. 109-110 (1994), p.1.

Google Scholar

[9] A.R. Allnatt and E.L. Allnatt, Phil. Mag. A Vol. 49 (1984), p.625.

Google Scholar

[10] L.K. Moleko, A.R. Allnatt and E.L. Allnatt, Phil. Mag. A Vol. 59 (1989), p.141.

Google Scholar

[11] I.V. Belova and G.E. Murch, Phil. Mag. A Vol. 80 (2000), p.599.

Google Scholar

[12] I.V. Belova and G.E. Murch, Phil. Mag. A Vol. 80 (2000), p.1469.

Google Scholar

[13] I.V. Belova and G.E. Murch, Defect Diffusion Forum, Vol. 224-225 (2004), p.127.

Google Scholar

[14] I V Belova and G E Murch, Phil. Mag. A Vol. 78 (1998), p.1085.

Google Scholar

[15] I V Belova and G E Murch, J. Phys. Chem. Solids Vol. 60 (1999), p. (2023).

Google Scholar

[16] A.B. Lidiard, Acta Metall. Vol. 34 (1986), p.1487.

Google Scholar

[17] L.K. Moleko and A.R. Allnatt, Phil. Mag. A Vol. 58 (1988), p.677.

Google Scholar

[18] I.V. Belova and G.E. Murch, Phil. Mag. Lett., Vol. 81 (2001), p.661.

Google Scholar

[19] N.R. Iorio, M.A. Dayananda, and R.E. Grace, Metall. Trans. Vol. 4 (1973), p.1339.

Google Scholar

[20] A.B. Gardner, R.L. Sanders, and R.L. Slifkin, Phys. Status Sol. Vol. 30 (1968), p.96.

Google Scholar

[21] P.T. Carlson, M.A. Dayananda, and R.E. Grace, Metall. Trans. Vol. 3 (1972), p.819.

Google Scholar

[22] I.V. Belova and G.E. Murch, Acta Mater, under review.

Google Scholar

[23] I.V. Belova and G.E. Murch: J. Phase Equil. Diffus., in press.

Google Scholar

[24] J.S. Kirkaldy and D.J. Young, Diffusion in the Condensed State (Inst. of Metals, London, 1987).

Google Scholar

[25] J.R. Manning, Metall. Trans. Vol. 1 (1970), p.499.

Google Scholar

[26] I.V. Belova and G.E. Murch, Acta Mater. Vol. 50 (2002), p.4617.

Google Scholar

[27] J.G. Duh and M.A. Dayananda, Diffusion Defect Data, Vol. 39 (1985), p.1.

Google Scholar

[28] S.J. Rothman, L.J. Nowicki and G.E. Murch, J. Phys. F: Met. Phys. Vol. 10 (1980), p.383.

Google Scholar