Diffusion of Critical Elements in Steel during Thermal Treatments in a Diamond Chemical Vapour Deposition Atmosphere

Article Preview

Abstract:

In this study, it will be investigated the diffusion of critical elements, namely, carbon (C) and iron (Fe), into a steel substrate (Impax Supreme) during the diamond chemical vapour deposition (CVD) process. The substrate temperature was varied from 700 to 850°C by plasma power manipulations to enable the correlation of substrate temperature with diffusion length and depth of the above mentioned critical elements into steel during film growth conditions. Methane concentration is also a parameter which has been considered during the parametric analysis. The crystalline compounds formed during the diamond growth process are studied using XRD analysis. In addition, SIMS technique is used with depth profiling to monitor the diffusion of elements during the process. The results obtained enabled to improve traditional understanding about the mechanisms relating to diamond deposition on steel substrates using CVD processes.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

270-275

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Roland Haubner and Benno Lux, Int. J. Refractory Metals and Hard Materials 24 (2006), p.380.

Google Scholar

[2] C. Bareiβ, M. Perle, S.M. Rosiwal and R.F. Singer, Diamond and Related Mater. 15 (2006), p.754.

Google Scholar

[3] J. Crank, The mathematics of diffusion (Clarendon Press, Oxford 1979).

Google Scholar

[4] N. Ali, V. F. Neto and J. Grácio, J. of Mater. Res. 18 (2003), p.296.

Google Scholar

[5] http: /www. uddeholm-tooling. com.

Google Scholar

[6] V.F. Neto, M. S. A. Oliveira, N. Ali and J. Grácio, Proceedings of RIVA - 5th Iberian Vacuum Meeting, September 18 to 21, 2005, University of Minho, Guimarães, Portugal.

Google Scholar

[7] V. F. Neto, T. Shokuhfar, M. S. A. Oliveira, J. Grácio and N. Ali, Int. J. of Nanomanufacturing, accepted for publication.

Google Scholar

[8] A. Fayer, O. Glozman, and A. Hoffman, App. Phys. Letters 67, 16 (1995), p.2299.

Google Scholar

[9] O. Glozman and A. Hoffman, Diamond and Related Mater. 6 (1997), p.796.

Google Scholar

[10] Y. Avigal, O. Glozman, I. Etsion, G. Halperin and A. Hoffman, Diamond and Related Mater. 6 (1997), p.381.

DOI: 10.1016/s0925-9635(96)00625-5

Google Scholar

[11] O. Glozman, A. Berner, D. Shechtman and A. Hoffman, Diamond and Related Mater. 7 (1998), p.597.

Google Scholar

[12] O. Glozman, G. Halperin, I. Etsion, A. Berner, D. Shectman, G. H. Lee and A. Hoffman, Diamond and Related Mater. 8 (1999), p.859.

DOI: 10.1016/s0925-9635(98)00321-5

Google Scholar

[13] L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman and R. Akhvlediani, Diamond and Related Mater. 13 (2004), p.1731.

DOI: 10.1016/j.diamond.2004.02.015

Google Scholar

[14] J.G. Buijnsters, P. Shankar, W. Fleischer, W.J.P. van Enckevort, J.J. Schermer and J.J. ter Meulen, Diamond and Related Mater. 11 (2002), p.536.

DOI: 10.1016/s0925-9635(01)00628-8

Google Scholar

[15] J.G. Buijnsters, P. Shankar, W.J.P. van Enckevort, J.J. Schermer and J.J. ter Meulen, Diamond and Related Mater. 13 (2004), p.848.

DOI: 10.1016/j.diamond.2003.11.012

Google Scholar