Integrated, Effective and Average Interdiffusion Coefficients and their Applications in Multicomponent Alloys for Energy Production Technologies

Article Preview

Abstract:

Solid-state diffusion is a subject of great interest for many intellectual merits and practical applications. It also provides excellent educational studies with cross-fertilization of science and technology. This paper examines the importance of multicomponent-multiphase interdiffusion with specific examples from materials and coatings for components in advanced energy production systems, including gas turbines and nuclear reactors. Results and analysis from laboratory experiments are presented in terms of interdiffusion fluxes, integrated interdiffusion coefficients, effective interdiffusion coefficients, and average multicomponent interdiffusion coefficients. Applications are highlighted for materials and coatings for components in advanced energy production technologies. Additional consideration is given to the refined approach to assess composition-dependent interdiffusion coefficients in multicomponent alloys.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Pages:

346-359

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.T. Sims, N.S. Stoloff, W.C. Hagel: Superalloys II (John Wiley and Sons, 1987).

Google Scholar

[2] R. Miller, J. Therm. Spray Technol. Vol. 6 (1997), p.35.

Google Scholar

[3] A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit: Prog. Mater. Sci. Vol. 46 (2001), p.505.

Google Scholar

[4] N.P. Padture, M. Gell, E.H. Jordan: Science Vol. 296 (2002), p.280.

Google Scholar

[5] R.D. Sisson, Jr., E.Y. Lee, Y.H. Sohn: Proc. PRICM-2, (1995), p.1203.

Google Scholar

[6] Y.H. Sohn, J.H. Kim, E. Jordan, M. Gell: Surf. Coat. Technol. Vol. 146/7 (2001), p.70.

Google Scholar

[7] Y.H. Sohn, M.A. Dayananda, G.L. Hofman, R.V. Strain, S.L. Hayes: J. Nucl. Mater. Vol. 279 (2000), p.317.

Google Scholar

[8] D.D. Keiser, Jr., S.L. Hayes, M.K. Meyer, C.R. Clark: J. Metals (JOM) Vol. 55 (2003), p.55.

Google Scholar

[9] H.J. Ryu, J.M. Park, C.K. Kim, Y.S. Kim, G.L. Hofman: J. Phase Equil. Diff. (2006) in Press.

Google Scholar

[10] L. Onsager: Ann. NY Acad. Sci. Vol. 46 (1965), p.241.

Google Scholar

[11] J.S. Kirkaldy, D.J. Young: Diffusion in Condensed State (The Institute of Metals - London, 1987).

Google Scholar

[12] J. Philibert: Atom Movements (Les Editions de Physique, 1991).

Google Scholar

[13] M.A. Dayananda, C.W. Kim: Metall. Trans. A Vol. 10A (1979), p.1333.

Google Scholar

[14] C.W. Kim, M.A. Dayananda: Metall. Trans. A Vol. 15A (1984), p.649.

Google Scholar

[15] M.A. Dayananda, D.A. Behnke: Scripta Metall. Vol. 25 (1991), p.2187.

Google Scholar

[16] M.A. Dayananda: Metall. Mater. Trans. A Vol. 27A (1996), p.2504.

Google Scholar

[17] M.A. Dayananda, Y.H. Sohn: Metall. Mater. Trans. A Vol. 30A (1999), p.535.

Google Scholar

[18] Y.H. Sohn, M.A. Dayananda: Acta Mater. Vol. 48 (2000), p.1427.

Google Scholar

[19] P. Kofsted: High Temperature Corrosion (Elsevier - London, 1980).

Google Scholar

[20] J.L. Smialek, C.A. Barret, J.C. Schaffer: ASM Metals Handbook: Design for Oxidation Resistance (ASM International, 1997).

Google Scholar

[21] D.P. Whittle, J. Stringer: Trans. Royal Soc. London A Vol. 295 (1980), p.309.

Google Scholar

[22] F.H. Stott, G.C. Wood, M.G. Hobby, Oxi. Metals Vol. 3 (1971), p.103.

Google Scholar

[23] J.A. Nesbitt, R.W. Heckel, Metall. Trans. A Vol. 18A (1987), p. (2061).

Google Scholar