Positron Lifetime in Deformed AlSi10.9Mg0.17Sr0.06 Alloys

Article Preview

Abstract:

Positron annihilation lifetime spectroscopy (PALS) is one of the nuclear techniques used in material science. (PALT) measurements are used to study the behaviour of the defect concentration in a set of AlSi10.9Mg0.17Sr0.06 alloys. It has been shown that positrons can become trapped at imperfect locations in solids, and that their mean lifetime can be influenced by changes in the concentration of such defects. No changes have been observed in the mean lifetime values following saturation of the defect concentration. The mean lifetime and trapping rates were studied for samples deformed up to 34.9 %. The concentrations of defects range vary from 5.194x1015 to 1.934x1018 cm-3 for thickness reductions of 2.2 to 34.9 %. The range of the dislocation density varies from 1.465x 108 to 5.454x1010 cm/cm3 over the same range of deformations.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 261-262)

Pages:

55-60

Citation:

Online since:

January 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. K. Mackenzie, T. L . Khoo, A. B . McDonald and B. T. A. McKee, Phys. Rev. Lett., 19, 946 (1967).

Google Scholar

[2] B. Bergersen and M. J Stott, Solid State Commun., 7, 1203 (1969).

Google Scholar

[3] D.C. Connors and R.N. West, Phys. Lett. A 30, 24 (1969).

Google Scholar

[4] P. Hautojarvi: Positrons in Solids, Topics in current physics, Springer-age, Berlin, verl Germany. vol. 12 (1979).

Google Scholar

[5] E. A. Badawi, M. A. Abdel-Rahman and S. A. Mahmoud , Appl. Surf. Sci., 149, 211 (1999).

Google Scholar

[6] C. Dauwe, M. Dorikens, L. Dorikens and D. Segers, Appl, phys., 5, 117 (1974).

DOI: 10.1007/bf00928222

Google Scholar

[7] M. A. Abdel-Rahman and E. A. Badawi, jpn. J. Appl. Phys., 35, 4827 (1996).

Google Scholar

[8] W. Brandt, Proc. International Conference on positron annihilation, Eds. A. T. Steewart and L. O. Roelling (Academic Press, New York, USA, 1976) P. 80. 0 1x10 10 2x10 10 3x10 10 4x10 10 5x10 10 6x10 10 5 10 15 20 25 30 35 Figure 6. Change of mean lifetime as a function of dislocation density in an AlSi10. 9Mg0. 17Sr0. 06 alloy AlSi10. 9Mg0. 17Sr0. 06 alloy Change in Mean Lifetime (∆τ) ps Dislocation Density (ρ) cm/cm3 0. 00 0. 01 0. 02 0. 03 0. 04 0. 05 0. 0 5. 0x10 17 1. 0x10 18 1. 5x10 18 2. 0x10 18 Figure 5. Defect concentration as a function of square strain in an AlSi10. 9Mg0. 17Sr0. 06 alloy Defect Concentration (ρ / ) cm -3 Square Strain (ε 2 ).

Google Scholar

[9] P. Kirkegaard, M. Eldrup, O. Mogensen and N. Pedersen, Comp. Phys. Commun., 23, 307 (1981).

Google Scholar

[10] M. A. Abdel- Rahman, Jpn. J. Appl. Phys., 36, 6530 (1997).

Google Scholar

[11] J. Baram and M. Rosen, phys. status solidi, A 16, 263 (1973).

Google Scholar

[12] G. Dlubek, O. Brummer and E. Hensel, phys. Status Solidi., A34. 737 (1976).

Google Scholar

[13] E.A. Badawi, M.A. Abdel-Rahaman and E.M. Hassan, Mater. Sci. Forum, 445, 45 (2004).

Google Scholar

[14] E.A. Badawi, M.A. Abdel-Rahaman and N.Z. El-Sayed, Aluminum Transactions, 1&2, 91, (2000).

Google Scholar

[15] B. T. A. Mckee, S. Saimoto, A. T. Stewart, and M. J. Stott, Can. J. Phys., 52, 759 (1974).

Google Scholar

[16] A. Saoucha, N. J. Pedersen and M. Eldrup, Mater. Sci. Forum, 105-110, 1971 (1992).

Google Scholar

[17] E. A. Badawi : Surf. Rev. and Lett., 11, 2, 167 (2004).

Google Scholar