Investigations of the axial displacements of Co2+and Ni3+ in Al2O3

Article Preview

Abstract:

The axial displacements for Co2+ and Ni3+ in Al2O3 are theoretically investigated starting from the perturbation formulas of the EPR parameters for a 3d7 ion with high spin (S=3/2) and low spin (S=1/2) in trigonal symmetry, respectively. Based upon these studies, the Co2+ is found to shift towards the center of the oxygen octahedron by an amount ZCo (≈ 0.03 Å) along the C3 axis, while the Ni3+ may suffer another axial displacement ZNi (≈ −0.38 Å) away from the center of the octahedron. The calculated EPR parameters based upon the above axial displacements show good agreement with the observed values. The differences in the EPR parameters and the axial displacements for the two 3d7 ions are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 261-262)

Pages:

93-102

Citation:

Online since:

January 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Niklasson and C. G. Granqvist: J. Appl. Phys. Vol. 55 (1984), p.3382.

Google Scholar

[2] M. Abe, M. Gomi and F. Yokoyama: J. Appl. Phys. Vol. 57 (1985), p.3909.

Google Scholar

[3] C. Maunoury, N. Marsot, T. Devolder and C. Schwebel: Mater. Sci. Engin. B Vol. 109 (2004), p.213.

Google Scholar

[4] J.X. Xu, X.M. Huang, G.Z. Xie, Y.H. Fang and D.Z. Liu: Mater. Res. Bull. Vol. 39 (2004), p.811.

Google Scholar

[5] G. Wu, N. Li, D.R. Zhou and K. Mitsuo: Surf. Coat. Techn. Vol. 176 (2004), p.157.

Google Scholar

[6] H. Shi and D. Lederman: J. Appl. Phys. Vol. 87 (2000), p.6095.

Google Scholar

[7] T.C. Wang, R.Z. Chen and W.H. Tuan: J. Eur. Ceram. Soc. Vol. 23 (2003), p.927.

Google Scholar

[8] G. Jacobs, J.A. Chaney, P.M. Patterson, T.K. Das and B.H. Davis: Appl. Catalysis A Vol. 264 (2004), p.203.

Google Scholar

[9] S.A. Hosseini, A. Taeb, F. Feyzi and F. Yaripour: Catalysis Commun. Vol. 5 (2004), p.137.

Google Scholar

[10] S.A. Marshell, T.T. Kikuchi and A.R. Reinberg: Phys. Rev. Vol. 125 (1962), p.453.

Google Scholar

[11] M.D. Sturge: Phys. Rev. Vol. 130 (1963), p.639.

Google Scholar

[12] I.N. Geifman and M.D. Glinchuk: Sov. Phys. Solid State Vol. 13 (1971), p.872.

Google Scholar

[13] S. Geschwind, P. Kisliuk, M.P. Klein, J.P. Remeika and D.L. Wood: Phys. Rev. Vol. 126 (1962), p.1684.

Google Scholar

[14] G.M. Zverev and A.M. Prokhorov: Soviet Phys. JETP (Eng. Transl. ) Vol. 9 (1959), p.451; Vol. 12 (1961), p.41.

Google Scholar

[15] R. Lacroix, U. Hochli and K.A. Muller: Helv. Phys. Acta Vol. 37 (1964), p.627.

Google Scholar

[16] A. Abragam and B. Bleaney: Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London 1970).

Google Scholar

[17] S.Y. Wu and W.C. Zheng: Phys. Stat. Sol. B Vol. 223 (2000), p.665.

Google Scholar

[18] X. Gao, S.Y. Wu, W.H. Wei and W.Z. Yan: Z. Naturforsch. A Vol. 60 (2005), p.145.

Google Scholar

[19] D.J. Newman and B. Ng: Rep. Prog. Phys. Vol. 52 (1989), p.699.

Google Scholar

[20] D.J. Newman, D.C. Pryce and W.A. Runciman: Am. Mineral. Vol. 63 (1978), p.1278.

Google Scholar

[21] A. Edgar: J. Phys. C Vol. 9 (1976), p.4303.

Google Scholar

[22] H.N. Dong and W.D. Chen: Z. Naturforsch. A Vol. 61 (2006), p.83.

Google Scholar

[23] K. Moorjani and N. Meavoy: Phys. Rev. Vol. 132 (1963), p.504.

Google Scholar

[24] D.S. McClure: J. Chem. Phys. Vol. 38 (1963), p.2289.

Google Scholar

[25] R. Muller and Hs. H. Gunthard: J. Chem. Phys. Vol. 44 (1966), p.365.

Google Scholar

[26] A.A. Mirzakhanyan and A.K. Petrosyan: Sov. Phys. Solid State Vol. 28 (1986), p.904.

Google Scholar

[27] J.L. Dr. Bouer, F. Van Bolhuis, R.O. Iazecamp and A. Vos: Acta Crystallogr. Vol. 21 (1966), p.841.

Google Scholar

[28] C.A. Morrison: Crystal fields for transition-metal ions in laser host materials ( Springer, Berlin 1992).

Google Scholar

[29] H.G. Drickamer, in: Solid State Physics, edited by F. Seitz and D. Turnbull, Academic Press, New York (1965), Vol. 17.

Google Scholar

[30] E. Clementi and D. L. Raimondi: J. Chem. Phys. Vol. 38 (1963), p.2686.

Google Scholar

[31] E. Clementi, D.L. Raimondi and W.P. Reinhardt: J. Chem. Phys. Vol. 47 (1967), p.1300.

Google Scholar

[32] J.S. Griffith: The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964).

Google Scholar

[33] B.R. McGarvey: J. Phys. Chem. Vol. 71 (1967), p.51.

Google Scholar

[34] E.K. Hodgson and I. Fridovich: Biochem. Biophys. Res. Commun. Vol. 54 (1973), p.270.

Google Scholar

[35] A. Abragam and M.H.I. Pryce: Proc. Roy. (London) A Vol. 206 (1951), p.173.

Google Scholar

[36] Y. Tanabe and S. Sugano: J. Phys. Soc. Japan Vol. 9 (1954), p.753; p.766.

Google Scholar

[37] D.S. McClure: J. Chem. Phys. Vol. 36 (1962), p.2757.

Google Scholar

[38] K.A. Muller, W. Berlinger and R.S. Rubins: Phys. Rev. Vol. 186 (1969), p.361.

Google Scholar

[39] S.Y. Wu and W.C. Zheng: Phys. Rev. B Vol. 65 (2002), p.224107.

Google Scholar

[40] H.N. Dong, S.Y. Wu, and W.C. Zheng: J. Phys. Chem. Solids Vol. 64 (2003), p.695.

Google Scholar

[41] R.D. Shannon: Acta Crystallogr. A Vol. 32 (1976), p.751.

Google Scholar

[42] J.M. Garcia-Lastra, J.A. Aramburu, M.T. Barriuso and M. Moreno: Chem. Phys. Lett. Vol. 385 (2004), p.286.

Google Scholar

[43] M.T. Barriuso, J.M. Garcia-Lastra, J.A. Aramburu and M. Moreno: Solid State Commun. Vol. 120 (2001), p.1.

Google Scholar

[44] M. T. Barriuso, J. A. Aramburu and M. Moreno: J. Phys.: Condens. Matter, Vol. 11 (1999), p. L525.

Google Scholar

[45] M.T. Barriuso and M. Moreno: Phys. Rev. B Vol. 29 (1984), p.3623.

Google Scholar