Electronic structure and doping effect of Ni and Co in the kink on the edge dislocation of bcc iron

Article Preview

Abstract:

Using the first-principles self-consistent discrete variational method based upon density functional theory, we investigated the energetics and the electronic structure of the 3d impurities Ni and Co in a kink on the [100](010) edge dislocation (ED) in bcc iron. The calculated results show that the interatomic energies between the impurity atom and the neighboring host atoms decrease. The bonding for the impurity atom (Ni, Co) and the neighboring host Fe atoms is weaker than that for an Fe atom at the X site and the corresponding atoms in the clean kink. These results indicate that sideways motion of the kink in the <100>{010} ED is accelerated by an impurity atom such as Ni or Co and that, consequently, the presence of impurities increases the dislocation mobility, thus leading to solid-solution softening.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 261-262)

Pages:

37-46

Citation:

Online since:

January 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Y. Zha: Design of Alloy Steels (National Defense Industry Press, Beijing, 1999).

Google Scholar

[2] J. P. Hirth and J. Lothe: Theory of Dislocations (McGraw-Hill, New York, 1968).

Google Scholar

[3] H. Alexander: Dislocations in Solids (North-Holland, Amsterdam, 1986), Vol. 8, p.115.

Google Scholar

[4] J. R. Patel and A. R. Chaudhuri, Phys. Rev. Vol. 143 (1966), p.601.

Google Scholar

[5] E. Pink and R. J. Arsenault, Mater. Sci. Vol. 24 (1979), p.1.

Google Scholar

[6] A . Sato and M. Meshii, Acta Metall. Vol. 21 (1973), p.753.

Google Scholar

[7] S. Nemat-Nasser and R. Kapoor, Int. J. Plast. Vol. 17 (2001), p.1351.

Google Scholar

[8] Yu. N. Gornostyrev, M. I. Katsnelson, A. Y. Stroev and A. V. Trefilov, Phys. Rev. B Vol. 71 (2005), p.094105.

Google Scholar

[9] M. Wen, S. Fukuyama and K. Yokogawa, Acta Mater. Vol. 51 (2002), p.1767.

Google Scholar

[10] L. Q. Chen, Z. C. Qiu, C.Y. Wang and T. Yu, Electronic effect of boron impurity on the kink in bcc iron, Journal of Alloys and Compounds (2006), in press.

DOI: 10.1016/j.jallcom.2006.08.050

Google Scholar

[11] D. E. Ellis and G. S. Painter, Phys. Rev. B Vol. 2 (1970), p.2887.

Google Scholar

[12] D. E. Ellis, G. A. Benesh and E. Bykom, Phys. Rev. B Vol. 16 (1977), p.3308.

Google Scholar

[13] B. Delley, D. E. Ellis and A. J. Freeman, Phys. Rev. B Vol. 27 (1983), p.2132.

Google Scholar

[14] D. Guenzburger and D. E. Ellis, Phys. Rev. B Vol. 46 (1992), p.285.

Google Scholar

[15] F. H. Wang and C. Y. Wang, Phys. Rev. B Vol. 57 (1998), p.289.

Google Scholar

[16] U. Von Barth and U. Hedin, J. Phys. C: Solid State Phys. Vol. 5 (1972), p.1615.

Google Scholar

[17] C. Y. Wang and D. L. Zhao, Mater. Res. Soc. Symp. Proc. Vol. 318 (1994), p.571.

Google Scholar

[18] C. Y. Wang, Defect and Diffusion Forum Vol. 79 (1995), p.125.

Google Scholar

[19] M. W. Finnis and J. E. Sinclair, Phil. Mag. A Vol. 50 (1984), p.45.

Google Scholar

[20] M. W. Finnis and J. E. Sinclair, Phil. Mag. A Vol. 53 (1986), p.161.

Google Scholar

[21] L. Q. Chen, C.Y. Wang and T. Yu, J. Appl. Phys. Vol. 100 (2006), p.1.

Google Scholar

[22] R. S. Mulliken, J. Chem. Phys. Vol. 23 (1955), p.1833.

Google Scholar