The Effects of Homogenization Time and Cooling Environment on Microstructure and Transformation Temperatures of Ni-42.5wt%Ti-7.5wt%Cu Alloy

Article Preview

Abstract:

The present paper deals with different effects of homogenization time and cooling environment on Ni-42.5wt%Ti-7.5wt%Cu alloy. The alloy was prepared by vacuum arc melting. Afterwards, three homogenization times (half, one and two hour) and three cooling environments (water, air and furnace) at 1373 K were selected. Optical and Scanning Electron Microscopic methods, EDX, DSC and hardness tests have been used to evaluate the microstructure, transformation temperatures and hardness. Results indicate that specimens that were cooled in air are super-saturated. Also, the microstructure from furnace cooling has many disparities with the other cooling environments’ microstructure and two types of precipitates exhibit in the matrix, but in other cooling environments, only one phase can be seen. Particles of the Ti2(Ni,Cu) phase are distributed in the matrix in all of the microstructures irrespective of cooling rate. Observations show that increasing the time of homogenization results in finer precipitates and uniform distribution in the matrix. In addition, alteration of cooling rate and time of homogenization affect the martensitic transformation temperatures. On the other hand, the hardness varies slightly for different homogenization times but declines extremely with decreasing cooling rate. Moreover homogenization time and the cooling environment affect the transformation temperatures on furnace cooled samples.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

344-350

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Otsuka, X. Ren: Intermetallics Vol. 7 (1999), p.511.

Google Scholar

[2] J. Van Humbeeck: Adv. Eng. Mater. Vol. 3 (2001), p.837.

Google Scholar

[3] T. Duerig, A. Pelton, D. Stöckel: Mater. Sci. Eng. Vol. 273 (1999), p.149.

Google Scholar

[4] S. Miyazaki and A. Ishida: Mater. Sci. Eng. Vols. 273-575 (1999), p.106.

Google Scholar

[5] K. Otsuka and C.M. Wayman: Shape Memory Materials, Cambridge University Press, Cambridge, New York, (1998).

Google Scholar

[6] K. Otsuka: Proceedings of the International Symposium on Shape Memory Materials, SMM-94, Beijing, China, (1994), p.129.

Google Scholar

[7] S. Mathews, J. Li, Q. Su and M. Wuttig: Phil. Mag. Lett. Vol. 79 (1999), p.265.

Google Scholar

[8] P. Min, K. Otsuka, S. Miyazaki and H. Horikawa: Mater. Trans. JIM Vol. 34 (1993), p.919.

Google Scholar

[9] P. Min, S. Miyazaki and K. Otsuka: Mater. Trans. JIM Vol. 33 (1992), p.337.

Google Scholar

[10] O. Mercier and K.N. Melton: Met. Trans. A Vol. 10 (1979), p.1053.

Google Scholar

[11] M. Es-Souni and H. F. Brandies: Biomaterials Vol. 22 (2001), p.2153.

Google Scholar

[12] W.J. Moberly and K.N. Melton: Engineering Aspects of Shape Memory Alloys, ButterworthHeinemann, London, 1990, p.46.

Google Scholar

[13] O. Mercia and K. N. Melton: Met. Trans. A Vol. 10 (1979), p.387.

Google Scholar

[14] R.H. Bricknell, K. N. Melton and D. Mercier: Met. Trans. A. Vol. 10 (1979), p.693.

Google Scholar

[15] Y. Shugo, F. Hasegawa and T. Honma: Bull. Res. Inst. Min. Met., Tohoku Univ. Vol. 37 (1981), p.79.

Google Scholar

[16] K. R. Edmonds and C. M. Hwang: Scripta Met. Vol. 20 (1986), p.733.

Google Scholar

[17] S. Miyazaki, I. Shiota, K. Otsuka and H. Tamura: in Proceedings of 9th International Meeting of Advanced Materials (Materials Research Society, Pittsburgh, PA (1989) p.153.

Google Scholar

[18] T. Saburi, T. Takagaki, S. Nenno and K. Koshino, ibid. p.147.

Google Scholar

[19] J.L. Proft, K. N. Melton and T. W. Duerig, ibid. p.159.

Google Scholar

[20] R.H. Bricknell and K. N. Melton: Met. Trans. A Vol. 11 (1980), p.1541.

Google Scholar

[21] T. Shugo and T. Honma: Bull. Res. Inst. Min. Met., Tohoku Univ. Vol. 43 (1987), p.117.

Google Scholar

[22] T. Tadaki and C. M. Wayman: Metallography Vol. 15 (1982), p.247.

Google Scholar

[23] T.H. Nam, J.H. Lee, K.W. Kim, H.J. Ahn, Y.W. Kim: J. Mater. Sci. Vol. 40 (2005), p.4925.

Google Scholar

[24] F.J.J. Van Loo, G.F. Bastin and A.J.H. Leenen: J. Less Common Met. Vol. 57 (1978), p.111.

Google Scholar

[25] S.P. Alisova and P.B. Budberg: Ross. Akad. Nauk., Metally Vol. 4 (1992), p.218 (in Russian).

Google Scholar