Kinetic Monte Carlo (KMC) Simulation of GaAs (001) β2 (2x4) Reconstructed Surface and Characterization

Article Preview

Abstract:

Several methods have been introduced to study and simulate homoepitaxial growth of III-V materials. GaAs (001) surface has widely been used in the last three decades due both to its importance as substrate and for characterization of epitaxial growth. In this paper, we firstly study the initial stage of homoepitaxial growth on a GaAs (001) β2(2x4) reconstructed surface using As2 . The simulation was carried out with Kinetic Monte Carlo simulations including the zinc blend structure β2 (2x4) reconstruction of GaAs surface. Then we discus results of the homoepitaxy GaAs on GaAs particularly morphological evolution of the two dimensional islands and observations were made in real-time at the growth temperature using reflection high energy electron diffraction (RHEED) and roughness morphology.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

308-317

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.S. Tok, J.H. Neave, F.E. Allegretti, J. Zhang, T.S. Jones, B.A. Joyce: Surf. Sci. Vol. 371 (1997), p.277.

Google Scholar

[2] W.G. Schmidt, S. Mirbt and F. Bechstedt: Phys. Rev. B. Vol. 62 (2000), p.8087.

Google Scholar

[3] E.S. Penev, On the theory of surface diffusion in InAs/GaAs(001) heteroepitaxy, Thesis, University of Berlin (2002).

Google Scholar

[4] B.A. Joyce and D.D. Vvedensky: Mat. Sci. Eng. Vol. 46 (2004), p.127.

Google Scholar

[5] V.P. Labella, M.R. Krause, Z. Ding and P.M. Tchibado: Surf. Sci. Vol. 60 (2005), p.1.

Google Scholar

[6] B.A. Joyce, D.D. Vvedensky, G.R. Bell , J.G. Belk, M. Itoh and T.S. Jones: Mat. Sci. Eng. B Vol. 67 (1999), p.7.

Google Scholar

[7] V.P. Labella, H. Yang, D.W. Bullock, P.M. Tchibado: Phys. Rev. Lett. Vol. 83 (1999), p.2989.

Google Scholar

[8] M. Itoh: Progress in Surface Science Vol. 66 (2001), p.53.

Google Scholar

[9] D.D. Vvedensky, M. Itoh, G.R. Bell, T.S. Jones and B.A. Joyce: J. Crystal Growth Vols. 201/202 (1999), p.56.

Google Scholar

[10] B.A. Joyce, D.D. Vvedensky, A.R. Avery, J.G. Belk, H.T. Dobbs and T.S. Jones: Appl. Surf. Sci. Vol. 130 (1998), p.357.

Google Scholar

[11] M. Itoh, G.R. Bell, B.A. Joyce, D.D. Vvedensky: Surf. Sci. Vol. 464 (2000), p.200.

Google Scholar

[12] P. Kratzer, E. Penev, M. Scheffler: Appl. Phys. A Vol. 75 (2002), p.79.

Google Scholar

[13] P. Kratzer, C.G. Morgan and M. Scheffler: Phys. Rev. B Vol. 59 (1999), p.15246.

Google Scholar

[14] P. Kratzer, E. Penev and M. Scheffler: Appl. Phys. A Vol. 75 (2002), p.79.

Google Scholar

[15] P. Kratzer, E. Penev and M. Scheffler: Appl. Phys. A Vol. 75 (2002), p.79.

Google Scholar

[16] A.C. Levi and M. Kotrla: J. Phys. Condens. Matter Vol. 9 (1997), p.299.

Google Scholar

[17] D.P. Landau and K. Binder; A guide to Monte Carlo simulation in statistical physics, Cambridge University Press, Cambridge (2000).

Google Scholar

[18] D.D. Vvedensky, S. Clarcke: Surf. Sci. Vol. 225 (1990), p.373.

Google Scholar

[19] B.A. Joyce, J. Zhang, T. Sitara and J.H. Neave: J. Crystal Growth Vol. 115 (1991), p.338.

Google Scholar

[20] M.A. Salmi, M. Alatalo, T. Ala-Nissila and R.M. Nieminen: Surf. Sci. Vol. 425 (1999), p.31.

Google Scholar

[21] Y. Abdelkafi, « Modélisation et simulation de l'épitaxie par jets moléculaires », Mémoire de magister, Université de Béchar, Algérie (2009).

Google Scholar

[22] N. Fazouan, « Simulation de suivi in situ par photoémission de la dynamique de croissance épitaxiale de semiconducteurs III-V », thèse de doctorat d'état, Université Ibn Tofail, Maroc (2001).

Google Scholar