Numerical Studies of the Diffusion Processes and First Step Oxidation in Nickel-Oxygen Systems by Variable Charge Molecular Dynamics

Article Preview

Abstract:

Variable charge molecular dynamic simulations have been performed to study the diffusion mechanisms of oxygen atoms (O) in nickel (Ni) in the temperature range 950-1600 K and the very first steps of oxidation of monocrystalline nickel surfaces at 300 K and 950 K. The oxygen diffusivity can be well described by an Arrhenius law over the temperature range considered. The oxygen diffusion coefficient has been analysed and values of Ea = 1.99 eV for the activation energy and D0 = 39 cm2.s-1 for the pre-exponential factor were obtained. The first steps growth of the oxide layer show that after the dissociative chemisorption of the oxygen molecules on nickel surface, the oxidation leads to an island growth mode as observed experimentally.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

513-518

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Chevalier, F. Desserrey, J.P. Larpin: Oxid. Met. Vol. 64 (2005), p.219.

Google Scholar

[2] S. Perusin: PhD thesis INP Toulouse (http: /ethesis. inp-toulouse. fr/archive/00000069/) (2004).

Google Scholar

[3] S Garruchet, O. Politano, P. Arnoux and V. Vignal: submitted to Solid State Commun. (2009).

Google Scholar

[4] S. Perusin, D. Monceau and E. Andrieu: J. Electron. Chem. Soc. Vol. 152 (2005), p. E000390.

Google Scholar

[5] E. H. Megchiche, M. Amarouche and C. Mijoule: J. Phys.: Condens. Matter. Vol. 19 (2007), p.296201.

DOI: 10.1088/0953-8984/19/29/296201

Google Scholar

[6] F.H. Streitz and J.W. Mintmire: Phys. Rev. B Vol. 50 (1994), p.11996.

Google Scholar

[7] X.W. Zhou, R.A. Johnson and H.N.G. Wadley: Phys. Rev. B Vol. 69 (2004), p.144113.

Google Scholar

[8] A. Hasnaoui, O. Politano, J. M. Salazar, and G. Aral: Phys. Rev. B Vol. 73 (2006), p.035427.

Google Scholar

[9] A. Hasnaoui, O. Politano, J. M. Salazar, G. Aral, R. K. Kalia, A. Nakano and P. Vashishta: Surf. Sci. Vol. 579 (2005), p.47.

DOI: 10.1016/j.susc.2005.01.043

Google Scholar

[10] SKRS. Sankaranarayanan, S. Ramanathan: Phys. Rev. B Vol. 78 (2008), p.085420.

Google Scholar

[11] A. Elsener, O. Politano, P. M. Derlet and H. Van Swygenhoven: Modelling Simul. Mater. Sci. Eng. Vol. 16 (2008), p.025006.

DOI: 10.1088/0965-0393/16/2/025006

Google Scholar

[12] A. Elsener, O. Politano, P. M. Derlet and H. Van Swygenhoven: Acta Mater. Vol. 57 (2009), p. (1998).

Google Scholar

[13] X.W. Zhou and H.N.G. Wadley: J. Phys. Condens. Matter. Vol. 17 (2005) , p.3619.

Google Scholar

[14] A. Einstein: Ann. Phys. Vol. 17 (1905) , p.549.

Google Scholar

[15] Y. Kraftmakher: Physics Reports Vol. 229 (1998), p.79.

Google Scholar

[16] J. -H. Park and C.J. Altstetter: Metall. Trans. A, Vol. 18 (1987), p.4.

Google Scholar

[17] R.A. Kerr: M. S. Thesis, The Ohio State University, Colombus, OH, (1972).

Google Scholar

[18] C.B. Alcock and P.B. Brown: Met. Sci. J. Vol. 3 (1969), p.116.

Google Scholar

[19] S. Goto, K. Nomaki and S. Koda: J. Japan Inst. Met. Vol. 31 (1967), p.600.

Google Scholar

[20] G.J. Lloyd and J.W. Martin: Met. Sci. J. Vol. 6 (1972), p.7.

Google Scholar

[21] R. Barlow and P.J. Grundy: Met. Sci. J. Vol. 3 (1969), p.116.

Google Scholar

[22] P.H. Holloway and J. B. Hudson: Surface Science Vol. 43 (1974), p.123.

Google Scholar

[23] P.H. Holloway and J. B. Hudson: Surface Science Vol. 43 (1974), p.141.

Google Scholar

[24] J.M. Salazar, O. Politano, S. Garruchet, A. Sanfeld and A. Steinchen: Phil. Mag. A Vol. 84 (2004), p.3397.

Google Scholar

[25] O. Politano, S. Garruchet and J.M. Salazar: Mat. Sci. Eng. A Vol. 387-389 (2004), p.749.

Google Scholar

[26] S. Garruchet, O. Politano, J.M. Salazar, A. Hasnaoui and T. Montesin: Appl. Surf. Sci. Vol. 252 (2006), p.5384.

Google Scholar