Investigations of the Gyromagnetic Factors for the Ni3+ Center in MgO

Article Preview

Abstract:

The electron paramagnetic resonance (EPR) gyromagnetic factors for the Ni3+ center in MgO are theoretically investigated using the improved g formulas for a tetragonally elongated octahedral 3d7 complex suffering the dynamical Jahn-Teller effect. From the studies, the impurity Ni3+ center is found to undergo the relative elongation along the tetragonal axis by about 1%. The calculated g value shows good agreement with the observed result, and the improvement in the theoretical calculations is achieved in this work as compared with the previous treatments. The local structure of the impurity center is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 303-304)

Pages:

113-116

Citation:

Online since:

July 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.M. Salem, M. Mokhtar, G.A. El-Shobaky: Solid State Ionics, 170 (2004) 33.

Google Scholar

[2] M.A. Mondragon, P.E. Munoz, J.L. Boldu: J. Appl. Phys., 57 (1985) 509.

Google Scholar

[3] L. Delgado: Solid State Commun., 50 (1984) 943.

Google Scholar

[4] J. Rivallin, B. Salce, A.M. de Goër: Solid State Commun., 19 (1976) 9.

Google Scholar

[5] M.M. Cruz, R.C. da Silva, J.V. Pinto, R.G. González, E. Alves, M. Godinho: J. Magn. Magn. Mater., 272-276 (2004) 840.

Google Scholar

[6] O. Bergadà, P. Salagre, Y. Cesteros, F. Medina, J.E. Sueiras: Appl. Catalysis A, 272 (2004) 125.

Google Scholar

[7] A. Schoenberg, J.T. Suss, Z. Luz, W. Low: Phys. Rev. B, 9 (1974) (2047).

Google Scholar

[8] A. Abragam, B. Bleaney: Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London 1970).

Google Scholar

[9] R. Lacroix, U. Hochli, K.A. Müller: Helv. Phys. Acta, 37 (1964) 627.

Google Scholar

[10] D.J. Newman, B. Ng: Rep. Prog. Phys., 52 (1989) 699.

Google Scholar

[11] W.L. Yu, X.M. Zhang, L.X. Yang, B.Q. Zen: Phys. Rev. B, 50 (1994) 6756.

Google Scholar

[12] D.J. Newman, D.C. Pryce, W.A. Runciman: Am. Mineral., 63 (1978) 1278.

Google Scholar

[13] D.S. McClure: J. Chem. Phys., 36 (1962) 2757.

Google Scholar

[14] K.A. Müller, W. Berlinger, R.S. Rubins: Phys. Rev., 186 (1969) 361.

Google Scholar

[15] K.H. Karlsson, T. Perander: Chem. Script., 3 (1973) 201.

Google Scholar

[16] Z.Y. Yang, C. Rudowicz, J. Qin: Physica B, 318 (2002) 188.

Google Scholar

[17] M.G. Zhao, J.A. Xu, G.R. Bai, H.S. Xie: Phys. Rev. B, 27 (1983) 1516.

Google Scholar

[18] P. Ganguly, G. Demazeau, J.H. Dance, P. Hagenmuller: Solid State Commun., 73 (1990) 617.

Google Scholar

[19] S. Geschwind, J.P. Remeika: J. Appl. Phys., 33 (1962) 370.

Google Scholar

[20] W. Low, J. T. Suss: Phys. Lett., 11 (1964) 115.

Google Scholar

[21] R.C. Weast: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1989) p. B196.

Google Scholar

[22] Y. Tanabe, S. Sugano: J. Phys. Soc. Japan, 9 (1954) 753; 9 (1954) 766.

Google Scholar

[23] M.J.L. Sangster, A.M. Stoneham: Phil. Mag. B, 43 (1981) 597.

Google Scholar