Theoretical Studies of the EPR Parameters for Rh+ in NaCl

Article Preview

Abstract:

The electron paramagnetic resonance (EPR) parameters g factor and the hyperfine structure constant A factor for the substitutional Rh+ in NaCl are theoretically studied from the perturbation formulas of these parameters for a 4d8 ion in cubic octahedra. In these formulas, the ligand orbital and spin-orbit coupling contributions which were normally omitted in the previous studies are taken into account using the cluster approach. The calculated g and A factors are in good agreement with the experimental data. The ligand contributions to the EPR parameters are somewhat important and should be considered in the analysis of the EPR spectra for a 4d8 ion in chlorides. The local structure of this center is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 303-304)

Pages:

125-129

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Aramburu, M . T. Barriuso, P. García Fernández, and M. Moreno: Adv. Quant. Chem., 44 (2003) 445.

Google Scholar

[2] J. M. Spaeth and F. K. Koschnick: J. Phys. Chem. Solids, 52 (1991) 1.

Google Scholar

[3] D.G. DeWit: Coordination Chemistry Reviews, 147 (1996) 209.

Google Scholar

[4] F. Callens, H. Vrielinck, P. Matthys, M. Zdravkova, H. Vercammen, and D. Schoemaker: J. Appl. Phys., 84 (1998) 422.

DOI: 10.1063/1.368044

Google Scholar

[5] H. Vercammen, D. Schoemaker, H. Kass, E. Goovaerts, A. Bouwen, H. Vrielinck, and F. Callens: J. Appl. Phys., 84 (1998) 428.

DOI: 10.1063/1.368045

Google Scholar

[6] H. Vercammen, D. Schoemaker, B. Brait, F. Ramaz, F. Callens: Phys. Rev. B, 59 (1999) 11286.

Google Scholar

[7] H. Vrielinck, F. Callens, M. Zdravkova, P. Matthys: J. Chem. Soc. Faraday Trans., 94 (1998) 2999.

DOI: 10.1039/a803042a

Google Scholar

[8] J.J. Chen and M.L. Du: Physica B, 215 (1995) 260.

Google Scholar

[9] J.J. Chen and M.G. Zhao: Phys. Stat. Sol. B, 143 (1987) 647.

Google Scholar

[10] G.L. McPherson, J.J. Kistenmacher, G.D. Stucky: J. Chem. Phys., 52 (1970) 815.

Google Scholar

[11] M. Hohne, M. Stasiw and A. Watterich: Phys. Stat. Sol., 34 (1969) 319.

Google Scholar

[12] J. Busse: Phys. Stat. Sol., 3 (1963) 1892.

Google Scholar

[13] R.M. Macfarlane: J. Chem. Phys., 47 (1967) (2006).

Google Scholar

[14] R.M. Macfarlane: Phys. Rev. B, 1 (1970) 989.

Google Scholar

[15] S.Y. Wu, W.Z. Yan, X.Y. Gao: Spectrochim. Acta A, 60 (2004) 701.

Google Scholar

[16] R.C. Weast: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1989) p. B196; F187.

Google Scholar

[17] E. Clementi and D.L. Raimondi: J. Chem. Phys., 38 (1963) 2686.

Google Scholar

[18] E. Clementi, D.L. Raimondi and W.P. Reinhardt: J. Chem. Phys., 47 (1967) 1300.

Google Scholar

[19] C.K. Jørgensen: Absorption Spectra and Chemical Bonding in Complexes (Pergamon Press, Oxford, 1962).

Google Scholar

[20] Z.Y. Yang, C. Rudowicz and J. Qin: Physica B, 318 (2002) 188.

Google Scholar

[21] M.G. Zhao, J.A. Xu, G.R. Bai and H.S. Xie: Phys. Rev. B, 27 (1983) 1516.

Google Scholar

[22] J.S. Griffith: The Theory of Transition-Metal Ions (Cambridge University Press, London, 1961).

Google Scholar

[23] G.L. McPherson, R.C. Kach and G.D. Stucky: J. Chem. Phys. Vol. 60 (1974), p.1424.

Google Scholar

[24] M.T. Barriuso, J.A. Aramburu, and M.J. Moreno: J. Phys.: Condens. Matt. Vol. 14 (2002), p.6521.

Google Scholar

[25] S. Fraga, K.M.S. Saxena, and J. Karwowski: Handbook of Atomic Data (Elsevier Press. New York, 1976).

Google Scholar

[26] G.L. McPherson and W.M. Heung: Solid State Commun. Vol. 19 (1976), p.53.

Google Scholar

[27] G.L. McPherson, R.C. Kach, and G.D. Stucky: J. Chem. Phys. Vol. 60 (1974), p.1424.

Google Scholar

[28] M. Hohne, M. Stasiw, and A. Watterich: Phys. Stat. Sol. Vol. 34 (1969), p.319.

Google Scholar