Liquid-Phase Sintering of Tungsten Heavy Alloys

Article Preview

Abstract:

Elemental powders of tungsten, nickel, iron and cobalt of compositions corresponding to (W-3.2Ni-0.8%Fe), (W-3.5Ni-1.5%Fe), and (W-4.5Ni-1.0Fe-1.5%Co) were mechanically alloyed in a tumbler rod mill for 2 hrs. Mechanically alloyed powders were liquid phase sintered at 1500oC for 90 min in vacuum. The sintered materials were heated up to 1150-1200oC in vacuum atmosphere, followed by quenching in water to suppress the impurity segregated at grain boundary. The sintered materials were subjected to cold-working by swaging from 8-30% reduction in area. The swaged specimens were age-hardened at 700oC. Full characterization for both the elemental powders and the sintered tungsten alloys were performed using optical microscopy, SEM analysis, EDS quantitative analysis, X-ray diffraction, hardness and compression testing. This paper will discuss the effects of the elemental powders characterization and the liquid phase sintering parameters on the microstructure and strength of these three tungsten heavy alloys.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 303-304)

Pages:

55-62

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.M. German, in Proceedings of The International Conference on Tungsten and Tungsten Alloys, Eds., A. Bose and R.J. Dowding, MPIF, New Jersey, USA, (1992) p.3.

Google Scholar

[2] W.D. / Cai, Y. Li, R.J. Dowding, F.A. Mohamed, E.J. Lavernia, Rev. Part. Mater., 3 (1995) 71.

Google Scholar

[3] R.M. German, Sintering Theory and Practice, Wiley, New York, (1996) p.230.

Google Scholar

[4] S.H. Park, D.K. Kim, S. Lee, H.J. Ryu, and S.H. Hong, Met. Mater. Trans. A, 32 (2001) 201.

Google Scholar

[5] A. Bose, G. Jerman, R.M. German, Powder Met. Inter., 21 (1989) 9.

Google Scholar

[6] J.S. Benjamin , Metall. Trans., 1 (1970) 2943.

Google Scholar

[7] H. Ryu, and S. Hong, Mater. Sci. and Engg. A, 363 (2003) 179.

Google Scholar

[8] M. Zhou, and R.J. Clifton, J. Applied Mech., 64, (1997) 487.

Google Scholar

[9] D.K. Kim, S. Lee, and H.S. Song, Met. Mater. Trans. A, 29 (1998) 1057.

Google Scholar

[10] E.P. Kim, M.H. Hong, W.H. Baek, and I.H. Moon, Met. Mater. Trans. A, 30 (1999) 627.

Google Scholar

[11] D.K. S. Lee, H.J. Ryu, S.H. Hong, and J.W. Noh, Met. Mater. Trans. A, 31 (2000) 2475.

Google Scholar

[12] A. Upedhyaya, Mater. Chem. Phys., 67 (2001) 101.

Google Scholar

[13] R. Gero, L. Borukhin, and I. Pikus, Mater. Sci., Engg. A, 302 (2001) 162.

Google Scholar

[14] Z. Wei, J. Yu, S. Hu, and Y. Li, Int. J. Impact Engg., 24 (2000) 747.

Google Scholar

[15] H.J. Ryu, S.H. Hong, W.H. Baek, Mater. Sci., Engg., 291 (2000) 91.

Google Scholar

[16] S.H. Hong, and H.J. Ryu, Mater. Sci. Engg. A, 344 (2003) 253.

Google Scholar

[17] R.K. Sandagi, L.E. McCandlish, B.H. Kear, and P. Seegopaul, Int. Powder Metal., 35 (1999) 27.

Google Scholar

[18] S.I. Nunes, and R.C. Bradt, J. Am. Ceramic Soc., 78 (1995) 2469.

Google Scholar

[19] A. Bock, and W.D. Schbert, B. Lux, Powder metal. Int., 24 (1992) 20.

Google Scholar

[20] A. Bose, H.R. Couque, and J. Langford, Int. J. Powder Metall., 28 (1992) 383.

Google Scholar

[21] L.S. Magness, Mech. Mater., 17 (1994) 147.

Google Scholar

[22] L.S. Magness, in Proceedings, Tungsten and Tungsten Alloys, Eds, A. Bose and R.J. Dowding, MPIF, Princeton, NJ (1992) p.15.

Google Scholar

[23] L.S. Magness, and T.G. Ferrand, in Proceedings, Army Science Conf., Research Triangle Park, NC (1990) p.465.

Google Scholar

[24] J.P. Wittenauer, T.G. Nieh and J. Wadsworth, Adv. Mater. Proc., 142.

Google Scholar

[3] (1992) 28.

Google Scholar

[25] W.E. Gurwell, Mater. Manuf. Process, 9.

Google Scholar

[6] (1994) 1115.

Google Scholar

[26] R.M. German, Liquid Phase Sintering, Plenum Press, New York, NY (1985) 5.

Google Scholar

[27] V.N. Neremenko, I.V. Naidych, and I.A. Lavrinenko, Liquid Phase-Phase Sintering, Consultants Bureau, New York (1970) p.2.

Google Scholar

[28] W.J. Huppmann, Z. Mellkde, 70.

Google Scholar

[12] (1979) 792.

Google Scholar

[29] W.J. Huppmann, H. Riegger, W.A. Kayasser, V. Smolej, and S. Perjovnik, Z. Metallkde, 70.

Google Scholar

[11] (1979) 707.

Google Scholar

[30] W.A. Kayasser, and G. Petzow, Powder Metall., 28.

Google Scholar

[3] (1985) 145.

Google Scholar

[31] F.D. Marquis, A. Mahajan, A. Mamalis, Mater. Proc. Techn., 161 (2005) 113.

Google Scholar

[32] J.R. Spencer, D.P. Buttleman, in Proceedings, Tungsten and Tungsten Alloys-Recent Advances, Eds. E. Chen, A. Crawson (1990) p.75.

Google Scholar

[33] B.C. Muddle and D.V. Edmonds, Acta Metall., 33 (1985) 2119.

Google Scholar

[34] B.C. Muddle , Metall. Trans. A, 15 (1983) 1089.

Google Scholar

[35] J.B. Posthill, M. C. Hogwood and D.V. Edmonds, Powder Metall., 29.

Google Scholar

[1] (1986) 45.

Google Scholar

[36] D.V. Edmonds and P.N. Jones, Metall. Trans. A, 10 (1979) 289.

Google Scholar

[37] B.C. Muddle and D.V. Edmonds, Met. Sci., 17.

Google Scholar

[5] (1983) 209.

Google Scholar

[38] C. Lea, B.C. Muddle and D.V. Edmonds, Metall. Trans. A, 14 (1983) 667.

Google Scholar

[39] B.H. Robin, and R.M. German, Metall. Trans. A, 19 (1988) 1523.

Google Scholar

[40] R.M. German, L.L. Bourguignon, and B.H. Rabin, J. Met., 37.

Google Scholar

[8] (1985) 36.

Google Scholar

[41] K.S. Churn and R.M. German, Metall. Trans., 15 (1984) 331.

Google Scholar

[42] A. Bose, D.M. Sims, and R.M. german, Int.J. Refract. Hard Met., 7.

Google Scholar

[2] (1988) 98.

Google Scholar

[43] B.E. Williams, J.J. Stiglich and R.B. Kaplan, in Proceedings, Tungsten and Tungsten Alloys - Recent Advances, Eds. A. Crowson and E.S. Chen, TMS, Warrendale, PA (1991) p.95.

Google Scholar