Structure and Optical Properties of Magnetron-Sputtered SiOx Layers with Silicon Nanoparticles

Article Preview

Abstract:

The properties of SiOx layer prepared by magnetron sputtering is studied by photoluminescence Auger and SIMS methods. The depth distribution of emission characteristics and chemical composition is obtained. It is shown that as-sputtered SiOx layers are non-emitted and characterized by homogeneous enough chemical composition. High-temperature annealing in nitrogen atmosphere stimulates not only the Si nanocrystal formation but also the redistribution of silicon and the appearance of Si depleted region near layer-substrate interface. The last process is found to be dependent on excess Si content. It is found that decrease of silicon content in the depth of annealed layers is followed by the decrease of particle sizes that is proved by the blue shift of photoluminescence maximum. The possible reasons of the appearance of Si depleted region are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 303-304)

Pages:

7-19

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. G. Cullis, L. T. Canham and P. D. J. Calcott, Journal of Applied Physics, 82 (1997) 909.

Google Scholar

[2] D. I. Kovalev, I. D. Yarostietzkii and T. Muschik: Applied Physics Letters, 64 (1994) 214; L. Tsybeskov, Yu. V. Vandyshev and P. M. Fauchet: Physical Review B, 49 (1994) 7821.

Google Scholar

[3] S. M. Prokes, O. J. Glembocki, V. M. Bermudez, R. Kaplan, L. E. Friedersdorf and P. C. Searson: Physical Review B, 45 (1992) 13788.

Google Scholar

[4] M. Baran, B. Bulakh, N. Korsunska, L. Khomenkova, and J. Jedrzejewski: Eur. Phys. Journal of Applied Physics, 27 (2004) 285.

DOI: 10.1051/epjap:2004089

Google Scholar

[5] M. Zacharias, L. Tsybeskov, K.D. Hirschman, P.M. Fauchet, J. Blasing, P. Kohlert, P. Veit, Journal of Non-Crystalline Solids, 227-230 (1998) 1132.

DOI: 10.1016/s0022-3093(98)00287-7

Google Scholar

[6] Q. Zhang, A. Filios, C. Lofgren, R. Tsu, Physica E, 8 (2000) 365.

Google Scholar

[7] M. Zacharias, S. Richter, P. Fischer, M. Schmidt, E. Wendler, Journal of Non-Crystaline Solids, 266-269 (2000) 608.

Google Scholar

[8] L. Wang, Z. Ma, X. Huang, Z. Li, J. Li, Y. Bao, J. Xu, W. Li, K. Chen, Solid State Communications, 117 (2001) 239.

Google Scholar

[9] F. Gourbilleau, P. Voivenel, X. Portier, R. Rizk Microelectronics Reliability, 40 (2000) 889; C. Ternon, F. Gourbilleau, X. Portier, P. Voivenel, C. Dufour, Thin Solid Films, 419 (2002) 5.

DOI: 10.1016/s0026-2714(99)00334-0

Google Scholar

[10] Li-ping You, C.L. Heng, S.Y. Ma, Z.C. Ma, W.H. Zong, Zheng-long Wu, G.G. Qin, Journal of Crystal Growth, 212 (2000) 109.

Google Scholar

[11] S. Charvet, R. Madelon, R. Rizk, Solid-State Electronics, 45 (2001) 1505.

Google Scholar

[12] T. Baron, F. Martin, P. Mur, C. Wyon, M. Dupuy, C. Busseret,A. Souifi, G. Guillot, Applied Surface Science, 164 (2000) 29.

DOI: 10.1016/s0169-4332(00)00332-9

Google Scholar

[13] D.H. Pearson, A.S. Edelstein, NanoStructured Materials, 11.

Google Scholar

[8] (1999) 1111-1122.

Google Scholar

[14] S. Charvet, R. Madelon, R. Rizk, Solid-State Electronics, 45 (2001) 1505.

Google Scholar

[15] H. Seifarth, R. Grotzschel, A. Markwitz, W. Matz, P. Nitzsche, L. Rebohle. Thin Solid Films, 330 (1998) 202.

DOI: 10.1016/s0040-6090(98)00609-9

Google Scholar

[16] L.A. Nesbit, Applied Physics Letters, 46 (1985) 38.

Google Scholar

[17] L.X. Yi, J. Heitmann, R. Scholz, M. Zacharias. Journal of Physics - Condensed Matter, 15 (2003) S2887.

Google Scholar

[18] Li-ping You, C.L. Heng, S.Y. Ma, Z.C. Ma, W.H. Zong, Zheng-long Wu, G.G. Qin, Journal of Crystal Growth, 212 (2000) 109.

Google Scholar

[19] L. Khomenkova, N. Korsunska, V. Yukhimchuk, B. Jumayev, T. Torchunska, A. Vivas Hernandez, A. Many, Y. Goldstein, E. Savir, J. Jedrzejewski. Journal of Luminescence, 102103, 705 (2003).

DOI: 10.1016/s0022-2313(02)00628-2

Google Scholar

[20] M. Baran, L. Khomenkova, N. Korsunska, T. Stara, M. Sheinkman, V. Yukhymchuk1, V. Khomenkov,Y. Goldstein, J. Jedrzejwski, E. Savir. Solid State Phenomena, (2005) 59.

DOI: 10.4028/www.scientific.net/ssp.108-109.59

Google Scholar

[21] M. Baran, L. Khomenkova, N. Korsunska, T. Stara, M. Sheinkman, Y. Goldstein, J. Jedrzejewski, E. Savir. Journal of Applied Physics, 98.

DOI: 10.1063/1.2134887

Google Scholar

[10] (2005) 085522.

Google Scholar

[22] T. Muller, K. -H. Heinig, W. Moller, Applied Physics Letters, 81 (2002) 3049.

Google Scholar

[23] T. Inokuma, Y. Wakayama, T. Muramoto, R. Aoki, Y. Kurata, S. Hasegana, Journal of Applied Physics, 83 (1998) 2228.

Google Scholar

[24] B.J. Hinds, F. Wang, D.M. Wolfe, C.L. Hinkle, G. Lucovsky. Journal of Non-Crystalline. Solids, 227-230 (1998) 507; Journal of Vacuum Science and Technology B, 16 (1998) 2171.

DOI: 10.1016/s0022-3093(98)00094-5

Google Scholar

[25] Y. Maeda. Physical Review B, 51 (1995) 1658.

Google Scholar

[26] C. Spinella, C. Bongiorno, G. Nicotra, E. Rimini, A. Muscara, S. Coffa, Applied Physics Letters, 87 044102.

DOI: 10.1063/1.1999839

Google Scholar

[27] M. Baran, L. Khomenkova, N. Korsunska, T. Stara, M. Sheinkman, Y. Goldstein, J. Jedrzejewski, E. Thin Solid Films, 2006, in press.

DOI: 10.4028/www.scientific.net/ssp.108-109.59

Google Scholar

[28] M.S. Dunaevskii, J.J. Grob, A.G. Zabrodskii, R. Laiho, A.N. Titkov, Semiconductors, 38 (2004) 1254.

DOI: 10.1134/1.1823054

Google Scholar

[29] V.A. Dan'ko, I.Z. Indutnyy, V.S. Lysenko, I. Yu. Maidanchuk, V.I. Min'ko, A.N. Nazarov, A.S. Tkachenko, P.E. Shepeliavyi, Semiconductors, 39 (2005) 1197.

Google Scholar