Studies of the EPR Parameters and Local Structure for the Cu2+ Center in Lanthanum Magnesium Nitrate

Article Preview

Abstract:

The electron paramagnetic resonance parameters (g-factors and the hyperfine structure constants) for the Cu2+ center in lanthanum magnesium nitrate (LMN) are theoretically studied from the conventional perturbation formulas of these parameters for a 3d9 ion in tetragonally elongated octahedra. The studied complex is found to exhibit the slight tetragonal elongation (characterized by the relative elongation ratio ρ  4%) due to the Jahn-Teller effect, which may entirely conceal the original trigonal distortion of the host Mg2+ site in LMN. The conventional formulas containing only the metal orbital and spin-orbit coupling contributions are proved to be valid for the Cu2+ center in view of the weak covalency and ligand spin-orbit coupling interactions. This defect is also compared with the similar Cu2+ center of the Jahn-Teller nature on the octahedral interstitial site in the CdSe nanocrystals.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 305-306)

Pages:

85-88

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.S. Šafrata, M. Koláč, J. Matas, M. Odehnal, K. Švec, J. Low-Temperature Phys., Vol. 41 (1980), p.405.

DOI: 10.1007/bf00117949

Google Scholar

[2] M.R. Anderson, G.T. Jenkin, J.W. White, Acta Crystallogr. B, Vol. 33 (1977), p.3933.

Google Scholar

[3] S.P. Kulkarni, A.N. Garg, Int. J. Rad. Appl. Instr. C, Vol. 38 (1991), p.39.

Google Scholar

[4] C.E. Byvik, Ph.D. Thesis - Va. Polytechnic Inst. (1971).

Google Scholar

[5] I.V. Lushchikov, V.Y. Taran, I.A. Frank, ZhETF , Vol. 39 (1965), p.21.

Google Scholar

[6] D.P. Breen, D.C. Krupka, F.I.B. Williams, Phys. Rev., Vol. 179 (1969), p.241.

Google Scholar

[7] S.O. Graham, R.L. White, Phys. Rev. B Vol. 10 (1974), p.4505.

Google Scholar

[8] A. Abragam, B. Bleaney: Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London 1970).

Google Scholar

[9] B. Villacampa, R. Alcalá, P. J. Alonso: Phys. Rev. B Vol. 49 (1994), p.1039.

Google Scholar

[10] W.H. Wei, S.Y. Wu, H.N. Dong: Z. Naturforsch. A Vol. 60 (2005), p.541.

Google Scholar

[11] D.J. Newman, B. Ng: Rep. Prog. Phys. Vol. 52 (1989), p.699.

Google Scholar

[12] Z.Y. Yang: J. Phys.: Condens. Matter Vol. 12 (2000), p.4091.

Google Scholar

[13] D.J. Newman, D.C. Pryce: W.A. Runciman: Am. Mineral. Vol. 63 (1978), p.1278.

Google Scholar

[14] A.S. Chakravarty: Introduction to the Magnetic Properties of Solids (Wiley-Interscience Publication, New York, 1980).

Google Scholar

[15] J. S. Griffith: The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964).

Google Scholar

[16] B.R. McGarvey: J. Phys. Chem. Vol. 71 (1967), p.51.

Google Scholar

[17] A. Abragam, M.H.I. Pryce: Proc. Roy. Soc. (London) A Vol. 206 (1951), p.164.

Google Scholar

[18] R.W. Meulenberg, T. van Buuren, K.M. Hanif, T.M. Willey, G.F. Strouse, L.J. Terminello: Nano Lett. Vol. 4 (2004), p.2277.

DOI: 10.1021/nl048738s

Google Scholar