A Study of the Physical Properties of Te15(Se100-xBix)85 Glassy Alloys

Article Preview

Abstract:

In the present communication, a study was made of the compositional variation of physical properties: average coordination number (), average number of constraints (Ncon), number of lone-pair electrons (L), mean bond energy (), cohesive energy (CE), average heat of atomization (Hs), glass transition temperature (Tg), density (ρ) and theoretical energy gap (Eg) for Te15(Se100-xBix)85 (x = 0, 1, 2, 3, 4, 5at%) glassy alloys. The mean bond energy and the cohesive energy have been calculated using the chemical bond approach (CBA). The glass transition temperature was calculated using the Tichy-Ticha approach, and has been found to increase with Bi content. The mean bond energy is found to be proportional to the glass transition temperature and the average coordination number. It has been found that the average coordination number, average number of constraints, mean bond energy and density increase, whereas the cohesive energy, average heat of atomization and theoretical energy gap decrease with increasing Bi content in Se-Te alloys.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 305-306)

Pages:

61-69

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Zakery and S.R. Elliot, J. Non- Cryst. Solids 330, 1 (2003).

Google Scholar

[2] V. Trnovcona, I. Furar and D. Lezal J. Non- Cryst. Solids 353, 1311 (2007).

Google Scholar

[3] M.H.R. Lankhorst, Nat. Mater. 4, 347 (2005).

Google Scholar

[4] P. Sharma and S.C. Katyal, Mater. Chem. Phys. 112, 892 (2008).

Google Scholar

[5] P. Sharma and S.C. Katyal, Appl. Phys. B: Lasers and Optics 95 , 367 (2009).

Google Scholar

[6] K. Shimakawa, J. Non-Cryst. Solids 77, 1253 (1985).

Google Scholar

[7] J.Y. Shim, S.W. Park and H.K. Baik, Thin Solid Films 31, 292 (1997).

Google Scholar

[8] J. M. Saitar, J. Ledru, A. Hamou and G. Saffarini, Physica B 245, 256 (1998).

Google Scholar

[9] M.A. Mazeed Khan, M. Zulfequer and M. Hussain, J. Phys. Chem. Solids 62, 10893 (2001).

Google Scholar

[10] M.M. Hafiz, A.H. Moharram, M.A. Abdel Rahim and A.A. Abu Sehly, Thin Solid films 7, 292 (1997).

DOI: 10.1016/s0040-6090(96)09091-8

Google Scholar

[11] H. Zishan, M.M. Khan, M. Zulfequar and M. Hussain, J. Phys. Condensed Matter 7, 8979 (1995).

Google Scholar

[12] S. Kumar, R. Arora and A. Kumar, Physica B 183, 172 (1993).

Google Scholar

[13] Ambika, P. B. Barman, Defects and Diffusion Forum 293, 107 (2009).

Google Scholar

[14] Mainika, P. Sharma and N. Thakur, Phil. Mag. 89, 3027 (2009).

Google Scholar

[15] P. Sharma and S.C. Katyal, Thin Solid Films 515, 7966 (2007).

Google Scholar

[16] N. Tohge,T. Minami and M. Tanaka,J. Non-Cryst. Solids. 59, 1015 (1983).

Google Scholar

[17] L. Tichy and H. Ticha, Mater. Lett. 21, 313 (1994).

Google Scholar

[18] L. Tichy and H. Ticha, J. Non-Cryst. Solids 189, 141 (1995).

Google Scholar

[19] J. Bicerano and S.R. Ovshinsky, J. Non-Cryst. Solids 74, 75 (1985).

Google Scholar

[20] G. Saffarini, J.M. Saiter and H. Schmitt, Opt. Mater. 29, 1143 (2007).

Google Scholar

[21] N.F. Mott, Phil. Mag. 19, 835 (1969).

Google Scholar

[22] K. Maeda, T. Sakai, D. Tonchev, M. Munzar,T. Ikari and S.O. Kasap, Mater. Sci. Eng. B1 22, 20 (2005).

Google Scholar

[23] J.P. Gaspard, A. Pellegatti, F. Marinelli, C. Bichara, Philo. Mag. B 77, 727 (1998).

Google Scholar

[24] P. Sharma, S.C. Katyal, Physica B 403, 3667 (2008).

Google Scholar

[25] S.A. Fayek, A.F. Maged and M.R. Balboul Vacuum 53, 447 (1999).

Google Scholar

[26] S.S. Fouad, S.A. Fayek and M.H. Ali, Vacuum 49, 25 (1998).

Google Scholar

[27] Liang Zhenhua, J. Non-Cryst. Solids 127, 298 (1991).

Google Scholar

[28] J.C. Phillips, J. Non-Cryst. Sol. 34, 153 (1979).

Google Scholar

[29] A. Sharma and P.B. Barman, Journal of Thermal Analysis and Calorimetry 96, 413 (2009).

Google Scholar

[30] R.T. Sanderson, Inorganic Chemistry (Affliated East -West Press PUT, New Delhi, 1971).

Google Scholar

[31] K. Morigaki, Physics of Amorphous Semiconductors ( World Scientific, Singapore, 1999).

Google Scholar

[32] I. Sharma, S.K. Tripathi and P.B. Barman Physica B 403, 624 (2008).

Google Scholar