Density Functional Theory Study of Kink with P in BCC Iron

Article Preview

Abstract:

The optimal geometries and mechanical properties of a kink with P are studied by applying density functional theory to the ½[111](1¯10) edge dislocation in bcc iron. The calculated impurity segregation energy shows that the P atom can be potentially trapped by the kink, and the doping P preferably segregates to the core region of the ½[111](1¯10) edge dislocation rather than to the <100>(010) edge dislocation. The analysis of the electronic structure indicates that the sideward motion of the kink is impeded owing to strong a interaction between P and neighboring Fe atoms. That is, the P induces a pinning effect on the ½[111](1¯10) edge dislocation. The hybridizations between P and Fe come from P 3p and Fe 3d4s4p. The p and d states have an obvious orientation, which may not be favorable to the toughness of iron. The localized effect of the P-kink complex distinctly affects the electronic structure as well as the energy of the system.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 305-306)

Pages:

39-47

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J A. Yan, C. Y. Wang, W. H. Duan and S. Y. Wang: Phys Rev B, 2004, 69, 214110.

Google Scholar

[2] Y. Niu, S. Y. Wang, D. L. Zhao and C. Y. Wang: J Phys: Cond Matt, 2001, 13, 4267.

Google Scholar

[3] S. Simonetti, M. E. Pronsato, G. Brizuela and A. Juan: Appl Surf Sci, 2003, 217, 56.

Google Scholar

[4] K. Tapasa, Y. N. Osetsky and D. J. Bacon: Acta Mater, 2007, 55, 93.

Google Scholar

[5] J. P. Hirth, J and Lothe: Theory of Dislocations. New York: McGraw-Hill (1968).

Google Scholar

[6] M. Wen, S. Fukuyama and K. Yokogawa: Acta Mater, 2003, 51, 1767.

Google Scholar

[7] Y. N. Gornostyrev, M. I. Katsnelson, A. Y. Stroev and A. V. Trefilov: Phys Rev B, 2005, 71, 094105.

Google Scholar

[8] N. I. Medvedeva, Y. N. Gornostyrev and A. J. Freeman: Phys Rev Lett, 2005, 94, 136402.

Google Scholar

[9] N. I. Medvedeva, Y. N. Gornostyrev, A. J. Freeman: Phys Rev B, 2005, 72, 134107.

Google Scholar

[10] L. Q. Chen, Z. C. Qiu, C. Y. Wang and T. Yu: J Alloys Comp, 2007, 428, 49.

Google Scholar

[11] T. Yu, L. Q. Chen, C. Y. Wang, Z. C. Qiu and J. P. Du: Chin Sci Bull, 2008, 53, 1796.

Google Scholar

[12] L. Q. Chen and Z. C. Qiu: Acta Mett Sin, 2007, 43, 1015.

Google Scholar

[13] L. Q. Chen, C. Y. Wang and T. Yu: Chin Sci Bull, 2007, 52, 2291.

Google Scholar

[14] L. Q. Chen, C. Y. Wang and T. Yu: Chin Phys B, 2008, 17, 662.

Google Scholar

[15] B. Delley: J Chem Phys, 1990, 92, 508.

Google Scholar

[16] D. E. Ellis, G. A. Benesh and E. Bykom: Phys Rev B, 1977, 16, 3308.

Google Scholar

[17] D. Guenzburger and D. E. Ellis: Phys Rev B, 1992, 45, 285.

Google Scholar

[18] L. Q. Chen, C. Y. Wang and T. Yu: J Appl Phys, 2006, 100, 023715.

Google Scholar

[19] S. H. Vosko, L. Wilk and M. Nusair: Can J Phys, 1980, 58, 1200.

Google Scholar

[20] L. Q. Chen, T. Yu, C. Y. Wang and Z. C. Qiu: Acta Phys Sin, 2008, 57, 0443.

Google Scholar

[21] C. Y. Wang, S. Y. Liu, L. G. Han: Phys Rev B, 1990, 41, 1359.

Google Scholar

[22] C. Y. Wang and D. L. Zhao: Mater Res Soc Symp Proc, 1994, 318, 571.

Google Scholar