[1]
Horstmann, M.; Wei, A.; Kammler, T.; Hontschel, J.; Bierstedt, H.; Feudel, T.; Frohberg, K.; Gerhardt, M.; Hellmich, A.; Hempel, K.; Hohage, J.; Javorka, P.; Klais, J.; Koerner, G.; Lenski, M.; Neu, A.; Otterbach, R.; Press, P.; Reichel, C.; Trentsch, M.; Trui, B.; Salz, H.; Schaller, M.; Engelmann, H.J.; Herzog, O.; Ruelke, H.; Hubler, P.; Stephan, R.; Greenlaw, D.; Raab, M.; Kepler, N.; Chen, H.; Chidambarrao, D.; Fried, D.; Holt, J.; Lee, W.; Nii, H.; Panda, S.; Sato, T.; Waite, A.; Liming, S.; Rim, K.; Schepis, D.; Khare, M.; Huang, S.F.; Pellerin, J.; Su, L.T.: Integration and optimization of embedded-SiGe, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies, Electron Devices Meeting, 2005, IEDM Technical Digest. IEEE International 5-5 Dec. 2005, pp.233-236.
Google Scholar
[2]
Leobandung, E.; Nayakama, H.; Mocuta, D.; Miyamoto, K.; Angyal, M.; Meer, H.V.; McStay, K.; Ahsan, I.; Allen, S.; Azuma, A.; Belyansky, M.; Bentum, R.V.; Cheng, J.; Chidambarrao, D.; Dirahoui, B.; Fukasawa, M.; Gerhardt, M.; Gribelyuk, M.; Halle, S.; Harifuchi, H.; Harmon, D.; Heaps-Nelson, J.; Hichri, H.; Ida, K.; Inohara, M.; Inouc, I.C.; Jenkins, K.; Kawamura, T.; Kim, B.; Ku, S.K.; Kumar, M.; Lane, S.; Liebmann, L.; Logan, R.; Melville, I.; Miyashita, K.; Mocuta, A.; O'Neil, P.; Ng, M.F.; Nogami, T.; Nomura, A.; Norris, C.; Nowak, E.; Ono, M.; Panda, S.; Penny, C.; Radens, C.; Ramachandran, R.; Ray, A.; Rhee, S.H.; Ryan, D.; Shinohara, T.; Sudo, G.; Sugaya, F.; Strane, J.; Tan, Y.; Tsou, L.; Wang, L.; Wirbeleit, F.; Wu, S.; Yamashita, T.; Yan, H.; Ye, Q.; Yoneyama, D.; Zamdmer, D.; Zhong, H.; Zhu, H.; Zhu, W.; Agnello, P.; Bukofsky, S.; Bronner, G.; Crabbe, E.; Freeman, G.; Huang, S.F.; Ivers, T.; Kuroda, H.; McHerron, D.; Pellerin, J.; Toyoshima, Y.; Subbanna, S.; Kepler, N.; Su, L.: High Performance 65 nm SOI Technology with Dual Stress Liner and low capacitance SRAM cell, VLSI Technology, 2005 Symposium on IEEE, pp.126-127.
Google Scholar
[3]
Wirbeleit, F; Grimm, V.; Krueger, C.; Streck, C.; Sonnemans, R.; Berry, I.: USJ Dopant bleaching and device effects in advanced microelectronic plasma enhanced resist strip processing, MRS Spring Meeting 2008, San Francisco.
DOI: 10.1557/proc-1070-e01-12
Google Scholar
[4]
Kim, Y.M.; Lo, G.Q.; Kwong, D.L.; Tseng, H.H.; Hance, R.: Anomalous transient diffusion of boron implanted into preamorphized Si during rapid thermal annealing, Applied Physics Letters, 55(1989)22, pp.2316-2318, doi: 10. 1063/1. 102048.
DOI: 10.1063/1.102048
Google Scholar
[5]
Kim, Y.M.; Lo, G.Q.; Kwong, D.L.; Tasch, A.F.; Novak, S.: Extended defect evolution in boron‐implanted Si during rapid thermal annealing and its effects on the anomalous boron diffusion, Applied Physics Letters, vol. 56, no. 13, pp.1254-1256.
DOI: 10.1063/1.102529
Google Scholar
[6]
Cho, K.; Numan, M.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.: Transient enhanced diffusion during rapid thermal annealing of boron implanted silicon, Appl. Physics Letters, 47(1985)12, pp.1321-1323, doi: 10. 1063/1. 96267.
DOI: 10.1063/1.96267
Google Scholar
[7]
Mauri, A.; Laurin, L.; Montalenti, F.; Benvenuti, A.: Atomistic approach for Boron Transient Enhanced Diffusion and clustering, ; Simulation of Semiconductor Processes and Devices, 2008. SISPAD 2008. International Conference on; p.329.
DOI: 10.1109/sispad.2008.4648304
Google Scholar
[8]
Heinrich,M.; Budil, M.; Potzl, H.W.: Simulation of transient boron diffusion during rapid thermal annealing in silicon, Journal of Applied Physics 69(1991)12, pp.8133-8138, doi: 10. 1063/1. 347466.
DOI: 10.1063/1.347466
Google Scholar
[9]
Windl, W.; Buneal, M.M.; Stumpf, R.; Dunham, S.T.; Masquelier, M. P.: First-Principles Study of Boron Diffusion in Silicon, Phys. Rev. Lett. 83(1999), p.4345–4348, doi: 10. 1103/Phys. Rev. Lett. 83. 4345.
DOI: 10.1103/physrevlett.83.4345
Google Scholar
[10]
Boninelli, S.; Mirabella, S.; Bruno, E.; Priolo, F.; Cristiano, F.; Claverie, A.; De Salvador, D.; Bisognin, G.; Napolitani, E.; Evolution of boron-interstitial clusters in crystalline Si studied by transmission electron microscopy, Applied Physics Letters, 91(Jul 2007)3, pp.31905-3.
DOI: 10.1063/1.2757145
Google Scholar
[11]
Ngamo, M.; Duguay,.; Cristiano, F.; Daoud-Ketata,K.; Pareige,.: Atomic scale study of boron interstitial clusters in ion-implanted silicon, J. Appl. Phys. 105(2009), pp.104904-5, doi: 10. 1063/1. 3126498.
DOI: 10.1063/1.3126498
Google Scholar
[12]
Cristiano, F. ; Hebras, X.; Cherkashin, N.; Claverie, A.; Lerch, W.; Paul, S.; Cluster formation in ultra-low-energy high-dose boron-implanted silicon, Appl. Phys. Lett. 83(2003), pp.5407-5409, doi: 10. 1063/1. 1637440.
DOI: 10.1063/1.1637440
Google Scholar
[13]
Wirbeleit, F.: Non-Gaussian Diffusion Model for Phosphorus in Silicon Heavy-Doped Junctions, Diff. Fundamentals 9(2009), p.5. 1-5. 7.
Google Scholar
[14]
Wirbeleit, F.: Non-Gaussian Diffusion of Phosphorus and Arsenic in Silicon with Local Density Diffusivity Model, Defect and Diffusion Forum (2010).
DOI: 10.4028/www.scientific.net/ddf.303-304.21
Google Scholar
[15]
Doetsch,G.: Der Faltungssatz in der Theorie der Laplace Transformation,; Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 2e série, tome 4, no. 1 (1935), pp.71-84.
DOI: 10.2422/2036-2145.2007.1.04
Google Scholar
[16]
Yoshida, M; Arai, E.: Impurity Diffusion in Silicon Based on the Pair Diffusion Model and Decrease in Quasi-Vacancy Formation Energy. Part Two: Arsenic, Jpn. J. Appl. Phys. Vol. 35(1996), pp.44-55.
DOI: 10.1143/jjap.35.44
Google Scholar
[17]
Kinoshita, H.; Kwong, D.L.: Physical Model for the Diffusion of Ion Implanted Boron and BF2 during Rapid Thermal Annealing, IEDM conference 1992, pp.165-168.
DOI: 10.1109/iedm.1992.307333
Google Scholar
[18]
Lever, R.F.; Bonar, J.M.; Willoughby, A.F.W.: Boron diffusion across silicon- silicon-germanium boundaries,; J. Appl. Phys. 83(1998)4, p.1988-(1994).
DOI: 10.1063/1.366927
Google Scholar
[19]
Feudel, Th.; Horstmann, M.; Herrmann, L.; Herden, M.; Gerhardt, M.; Greenlaw, D.; Fisher, D.; Kluth, J.: Process Integration Issues With Spike, Flash and Laser Anneal Implementation for 90 and 65nm Technologies, 14th International Conference on Advanced Thermal Processing of Semiconductors - RTP2006, 10-13 Oct. 2006 , pp.73-78.
DOI: 10.1109/rtp.2006.367984
Google Scholar
[20]
Lanzerath, F.; Buca, D.; Trinkaus, H.; Goryll, M.; Mantl, S.; Knoch, J.; Breuer, U.; Skorupa, W.; Ghyselen, B.; Boron activation and diffusion in silicon and strained silicon-on-insulator by rapid thermal and flash lamp annealing, J. Appl. Phys., 104 (2008).
DOI: 10.1063/1.2968462
Google Scholar
[21]
Feudel, T.: Advanced Annealing Schemes for High-Performance SOI Logic Technologies, Materials Science Forum; March, 573-574(2008), pp.387-400.
DOI: 10.4028/www.scientific.net/msf.573-574.387
Google Scholar
[22]
Jones, K.S.; Kuryliw, E.; Murto, R.; Rendon, M.; Talwar, S.; : Boron diffusion upon annealing of laser thermal processed silicon ", Ion Implantation Technology, 2000. Conference on, pp.111-114, doi: 10. 1109/. 2000. 924103.
DOI: 10.1109/iit.2000.924103
Google Scholar
[23]
Cojocaru-Miredin, O.; Mangelinck, D.; Blavette, D.: Nucleation of boron clusters in implanted silicon,; J. Appl. Phys., 106(2009)11, pp.113525-7; doi: 10. 1063/1. 3265998.
DOI: 10.1063/1.3265998
Google Scholar
[24]
Narayan, J,; Holland, O.W.; Christue, W.H.; Wortman, J.J.: Rapid thermal and pulsed laser annealing of boron fluoride-implanted silicon, J. Appl. Phys. 57(1985)8, pp.2709-2715.
DOI: 10.1063/1.335411
Google Scholar
[25]
Hong-Jyh, Li; Kohli, P.; Ganguly, S.; Kirichenko, T.A.; Zeitzoff, P.; Torres, K.; Banerjee, S.; Boron diffusion and activation in the presence of other species, Electron Devices Meeting, 2000. IEDM Technical Digest. International, 2000, pp.515-518.
DOI: 10.1109/iedm.2000.904368
Google Scholar