Non-Gaussian Local Density Diffusion (LDD-) Model for Boron Diffusion in Si- and SixGe1-x Ultra-Shallow Junction Post-Implant and Advanced Rapid-Thermal-Anneals

Article Preview

Abstract:

Boron diffusion after implant and anneal has been studied extensively in the past, without de-convoluting the Boron diffusion behavior by the initial post implant Boron concentration profile, which is done in this work first time. To support the de-convolution approach, the local density diffusion (LDD) model is selected, because this model is based on just one single arbitrary diffusion parameter per atomic species and host lattice combination. The LDD model is used for Phosphorus and Arsenic diffusion so far and an extension to simulate Boron diffusion in presence of Boron clusters is presented here. As the result, maximum Boron penetration depth post different rapid thermal anneals and the quantification of diffusing and clustering (non-diffusing) Boron in silicon and silicon-germanium host lattice systems are given.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 305-306)

Pages:

71-84

Citation:

Online since:

October 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Horstmann, M.; Wei, A.; Kammler, T.; Hontschel, J.; Bierstedt, H.; Feudel, T.; Frohberg, K.; Gerhardt, M.; Hellmich, A.; Hempel, K.; Hohage, J.; Javorka, P.; Klais, J.; Koerner, G.; Lenski, M.; Neu, A.; Otterbach, R.; Press, P.; Reichel, C.; Trentsch, M.; Trui, B.; Salz, H.; Schaller, M.; Engelmann, H.J.; Herzog, O.; Ruelke, H.; Hubler, P.; Stephan, R.; Greenlaw, D.; Raab, M.; Kepler, N.; Chen, H.; Chidambarrao, D.; Fried, D.; Holt, J.; Lee, W.; Nii, H.; Panda, S.; Sato, T.; Waite, A.; Liming, S.; Rim, K.; Schepis, D.; Khare, M.; Huang, S.F.; Pellerin, J.; Su, L.T.: Integration and optimization of embedded-SiGe, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies, Electron Devices Meeting, 2005, IEDM Technical Digest. IEEE International 5-5 Dec. 2005, pp.233-236.

Google Scholar

[2] Leobandung, E.; Nayakama, H.; Mocuta, D.; Miyamoto, K.; Angyal, M.; Meer, H.V.; McStay, K.; Ahsan, I.; Allen, S.; Azuma, A.; Belyansky, M.; Bentum, R.V.; Cheng, J.; Chidambarrao, D.; Dirahoui, B.; Fukasawa, M.; Gerhardt, M.; Gribelyuk, M.; Halle, S.; Harifuchi, H.; Harmon, D.; Heaps-Nelson, J.; Hichri, H.; Ida, K.; Inohara, M.; Inouc, I.C.; Jenkins, K.; Kawamura, T.; Kim, B.; Ku, S.K.; Kumar, M.; Lane, S.; Liebmann, L.; Logan, R.; Melville, I.; Miyashita, K.; Mocuta, A.; O'Neil, P.; Ng, M.F.; Nogami, T.; Nomura, A.; Norris, C.; Nowak, E.; Ono, M.; Panda, S.; Penny, C.; Radens, C.; Ramachandran, R.; Ray, A.; Rhee, S.H.; Ryan, D.; Shinohara, T.; Sudo, G.; Sugaya, F.; Strane, J.; Tan, Y.; Tsou, L.; Wang, L.; Wirbeleit, F.; Wu, S.; Yamashita, T.; Yan, H.; Ye, Q.; Yoneyama, D.; Zamdmer, D.; Zhong, H.; Zhu, H.; Zhu, W.; Agnello, P.; Bukofsky, S.; Bronner, G.; Crabbe, E.; Freeman, G.; Huang, S.F.; Ivers, T.; Kuroda, H.; McHerron, D.; Pellerin, J.; Toyoshima, Y.; Subbanna, S.; Kepler, N.; Su, L.: High Performance 65 nm SOI Technology with Dual Stress Liner and low capacitance SRAM cell, VLSI Technology, 2005 Symposium on IEEE, pp.126-127.

Google Scholar

[3] Wirbeleit, F; Grimm, V.; Krueger, C.; Streck, C.; Sonnemans, R.; Berry, I.: USJ Dopant bleaching and device effects in advanced microelectronic plasma enhanced resist strip processing, MRS Spring Meeting 2008, San Francisco.

DOI: 10.1557/proc-1070-e01-12

Google Scholar

[4] Kim, Y.M.; Lo, G.Q.; Kwong, D.L.; Tseng, H.H.; Hance, R.: Anomalous transient diffusion of boron implanted into preamorphized Si during rapid thermal annealing, Applied Physics Letters, 55(1989)22, pp.2316-2318, doi: 10. 1063/1. 102048.

DOI: 10.1063/1.102048

Google Scholar

[5] Kim, Y.M.; Lo, G.Q.; Kwong, D.L.; Tasch, A.F.; Novak, S.: Extended defect evolution in boron‐implanted Si during rapid thermal annealing and its effects on the anomalous boron diffusion, Applied Physics Letters, vol. 56, no. 13, pp.1254-1256.

DOI: 10.1063/1.102529

Google Scholar

[6] Cho, K.; Numan, M.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.: Transient enhanced diffusion during rapid thermal annealing of boron implanted silicon, Appl. Physics Letters, 47(1985)12, pp.1321-1323, doi: 10. 1063/1. 96267.

DOI: 10.1063/1.96267

Google Scholar

[7] Mauri, A.; Laurin, L.; Montalenti, F.; Benvenuti, A.: Atomistic approach for Boron Transient Enhanced Diffusion and clustering, ; Simulation of Semiconductor Processes and Devices, 2008. SISPAD 2008. International Conference on; p.329.

DOI: 10.1109/sispad.2008.4648304

Google Scholar

[8] Heinrich,M.; Budil, M.; Potzl, H.W.: Simulation of transient boron diffusion during rapid thermal annealing in silicon, Journal of Applied Physics 69(1991)12, pp.8133-8138, doi: 10. 1063/1. 347466.

DOI: 10.1063/1.347466

Google Scholar

[9] Windl, W.; Buneal, M.M.; Stumpf, R.; Dunham, S.T.; Masquelier, M. P.: First-Principles Study of Boron Diffusion in Silicon, Phys. Rev. Lett. 83(1999), p.4345–4348, doi: 10. 1103/Phys. Rev. Lett. 83. 4345.

DOI: 10.1103/physrevlett.83.4345

Google Scholar

[10] Boninelli, S.; Mirabella, S.; Bruno, E.; Priolo, F.; Cristiano, F.; Claverie, A.; De Salvador, D.; Bisognin, G.; Napolitani, E.; Evolution of boron-interstitial clusters in crystalline Si studied by transmission electron microscopy, Applied Physics Letters, 91(Jul 2007)3, pp.31905-3.

DOI: 10.1063/1.2757145

Google Scholar

[11] Ngamo, M.; Duguay,.; Cristiano, F.; Daoud-Ketata,K.; Pareige,.: Atomic scale study of boron interstitial clusters in ion-implanted silicon, J. Appl. Phys. 105(2009), pp.104904-5, doi: 10. 1063/1. 3126498.

DOI: 10.1063/1.3126498

Google Scholar

[12] Cristiano, F. ; Hebras, X.; Cherkashin, N.; Claverie, A.; Lerch, W.; Paul, S.; Cluster formation in ultra-low-energy high-dose boron-implanted silicon, Appl. Phys. Lett. 83(2003), pp.5407-5409, doi: 10. 1063/1. 1637440.

DOI: 10.1063/1.1637440

Google Scholar

[13] Wirbeleit, F.: Non-Gaussian Diffusion Model for Phosphorus in Silicon Heavy-Doped Junctions, Diff. Fundamentals 9(2009), p.5. 1-5. 7.

Google Scholar

[14] Wirbeleit, F.: Non-Gaussian Diffusion of Phosphorus and Arsenic in Silicon with Local Density Diffusivity Model, Defect and Diffusion Forum (2010).

DOI: 10.4028/www.scientific.net/ddf.303-304.21

Google Scholar

[15] Doetsch,G.: Der Faltungssatz in der Theorie der Laplace Transformation,; Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 2e série, tome 4, no. 1 (1935), pp.71-84.

DOI: 10.2422/2036-2145.2007.1.04

Google Scholar

[16] Yoshida, M; Arai, E.: Impurity Diffusion in Silicon Based on the Pair Diffusion Model and Decrease in Quasi-Vacancy Formation Energy. Part Two: Arsenic, Jpn. J. Appl. Phys. Vol. 35(1996), pp.44-55.

DOI: 10.1143/jjap.35.44

Google Scholar

[17] Kinoshita, H.; Kwong, D.L.: Physical Model for the Diffusion of Ion Implanted Boron and BF2 during Rapid Thermal Annealing, IEDM conference 1992, pp.165-168.

DOI: 10.1109/iedm.1992.307333

Google Scholar

[18] Lever, R.F.; Bonar, J.M.; Willoughby, A.F.W.: Boron diffusion across silicon- silicon-germanium boundaries,; J. Appl. Phys. 83(1998)4, p.1988-(1994).

DOI: 10.1063/1.366927

Google Scholar

[19] Feudel, Th.; Horstmann, M.; Herrmann, L.; Herden, M.; Gerhardt, M.; Greenlaw, D.; Fisher, D.; Kluth, J.: Process Integration Issues With Spike, Flash and Laser Anneal Implementation for 90 and 65nm Technologies, 14th International Conference on Advanced Thermal Processing of Semiconductors - RTP2006, 10-13 Oct. 2006 , pp.73-78.

DOI: 10.1109/rtp.2006.367984

Google Scholar

[20] Lanzerath, F.; Buca, D.; Trinkaus, H.; Goryll, M.; Mantl, S.; Knoch, J.; Breuer, U.; Skorupa, W.; Ghyselen, B.; Boron activation and diffusion in silicon and strained silicon-on-insulator by rapid thermal and flash lamp annealing, J. Appl. Phys., 104 (2008).

DOI: 10.1063/1.2968462

Google Scholar

[21] Feudel, T.: Advanced Annealing Schemes for High-Performance SOI Logic Technologies, Materials Science Forum; March, 573-574(2008), pp.387-400.

DOI: 10.4028/www.scientific.net/msf.573-574.387

Google Scholar

[22] Jones, K.S.; Kuryliw, E.; Murto, R.; Rendon, M.; Talwar, S.; : Boron diffusion upon annealing of laser thermal processed silicon ", Ion Implantation Technology, 2000. Conference on, pp.111-114, doi: 10. 1109/. 2000. 924103.

DOI: 10.1109/iit.2000.924103

Google Scholar

[23] Cojocaru-Miredin, O.; Mangelinck, D.; Blavette, D.: Nucleation of boron clusters in implanted silicon,; J. Appl. Phys., 106(2009)11, pp.113525-7; doi: 10. 1063/1. 3265998.

DOI: 10.1063/1.3265998

Google Scholar

[24] Narayan, J,; Holland, O.W.; Christue, W.H.; Wortman, J.J.: Rapid thermal and pulsed laser annealing of boron fluoride-implanted silicon, J. Appl. Phys. 57(1985)8, pp.2709-2715.

DOI: 10.1063/1.335411

Google Scholar

[25] Hong-Jyh, Li; Kohli, P.; Ganguly, S.; Kirichenko, T.A.; Zeitzoff, P.; Torres, K.; Banerjee, S.; Boron diffusion and activation in the presence of other species, Electron Devices Meeting, 2000. IEDM Technical Digest. International, 2000, pp.515-518.

DOI: 10.1109/iedm.2000.904368

Google Scholar