Bulk Diffusion of Homovalent Atomic Probes of Scandium, Lanthanum and Thorium in Single Crystals of Tungsten

Article Preview

Abstract:

The volume diffusion of nonmagnetic homovalent atomic probes (APs) from the IIIB group of the periodic table of the elements (PTE)Sc, La, and Th in Whas been studied by the method of secondary ion mass spectrometry. The Arrhenius dependences have the following parameters: the coefficients DSc - (D0)Sc = (1.4  0.3)10-4 m2s-1 and QSc = (546±4) kJ/mole; the coefficients D¬La - (D0)La = (1.6  0.8)×10-6 m2s-1 and QLa = (41010) kJ/mole; and the coefficients DTh - (D0)Th = 4.4×10-6 m2s-1 and QTh = 447 kJ/mole. It has been found that the coefficients D5dAP(Tm)W of the bulk diffusion of transition 5d APs in W coincide at its melting point (Tm)W. The enthalpies, QWSc,La,Th, of the volume diffusion of nonmagnetic homovalent APs from the IIIB group of PTE increase linearly with decreasing relaxation volumes, , of these APs, which interact with vacancies in W. The sums, (Q + E)WSc,La,Th, of the bulk diffusion enthalpies, QWSc,La,Th, and the relaxation energy, (E)WSc,La,Th, of the environments of homovalent APs diffusing to W are nearly constant.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 305-306)

Pages:

1-13

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Klemradt, B. Drittler, T. Hoshino, R. Zeller, P.H. Dederichs: Physical Review B, 43 (1991) 9487.

DOI: 10.1103/physrevb.43.9487

Google Scholar

[2] N.K. Archipova, S.M. Klotsman, Ya.A. Rabovskyi, A.N. Timofeev: The Physics of Metals and Metallography, 43 (1977) 779.

Google Scholar

[3] N.K. Archipova, S.M. Klotsman, I.P. Polikarpova et al.: Physical Review B, 30 (1987) 1788.

Google Scholar

[4] S.M. Klotsman, A.N. Timofeev: The Physics of. Metals and Metallography, 83 (1997) 86.

Google Scholar

[5] A. Janotti, M. Krčmar, C.L. Fu, R.C. Reed: Physical Review Letters, 92 (2004) 085901.

Google Scholar

[6] Diffusion in Solid Metals and Alloys, Ed.H. Mehrer, Berlin, Springer-Bőrnstein, (1990).

Google Scholar

[7] S.M. Klotsman, S.A. Matveev, S.V. Osetrov, A.N. Timofeev: The Physics of Metals and Metallography, 83 (1997) 114.

Google Scholar

[8] T. Ohnuma, N. Soneda, M. Iwasawa: Acta Materialia, 57 (2009) 5947.

Google Scholar

[9] T.R. Mattsson, N. Sandberg, R. Armiento, A.E. Mattsson: Physical Review B, 80 (2009) 224104.

Google Scholar

[10] V.Т. Cherepin, Ion Probe, Kiev, ND, (1981).

Google Scholar

[11] Methods of Surface Analysis, Ed. Czanderna, (Elsevier Co, NY, 1975).

Google Scholar

[12] S.M. Klotsman, S.V. Osetrov, A.N. Timofeev: The Physics of Metals and Metallography, 81 (1996) 322.

Google Scholar

[13] S.M. Klotsman, V.M. Koloskov, S.V. Osetrov, I.P. Polikarpova, G.N. Tatarinova, A.N. Timofeev: The Physics of Metals and Metallography, 67 (1989) 136.

Google Scholar

[14] P.G. Shewmon: Diffusion in Solids, (McGraw-Hill Co, NY, 1965).

Google Scholar

[15] G.E. Murch: Diffusion in Solids: Unresolved Problems, (Trans. Tech. Publ., Zurich 1992).

Google Scholar

[16] H. Меhrer, S. Divinski: Defect and Diffusion Forum, 289-292 (2009) 15.

Google Scholar

[17] N. Papanikolaou, R. Zeller, P.H. Dederichs: Physical Review B, 55 (1997) 4157.

Google Scholar

[18] Ch. Kittel: Introduction to Solid State Physics, (Forth Ed. NY, 1978).

Google Scholar

[19] P.A. Korzhavyi, I.A. Abrikosov, B. Johanson, A.V. Ruban, H.L. Skriver: Physical Review B, 59 (1999) 11693.

Google Scholar