Computer Simulation of Fe Diffusion in Liquid Al and along Al Grain Boundaries

Article Preview

Abstract:

We performed molecular dynamics simulation of diffusion along symmetric <100> 5 and <111> 7 and one non-symmetric <100> 5 tilt grain boundaries in Al in the presence of Fe impurities. The simulation results are in reasonable agreement with available experimental data. The addition of Fe considerably decreases both Al and Fe diffusivities and increases the activation energy for diffusion. The simulation data indicate that the mechanism of diffusion is different in different grain boundaries. The diffusion along <100> 5 grain boundaries reminds that in liquid alloys.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 309-310)

Pages:

223-230

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[5] R.W. Balluffi and J.W. Cahn: Acta metal. Vol. 29 (1981), p., p.493.

Google Scholar

[1] L.F. Mondolfo: Aluminum alloys: structure and properties (Butterworths, London, Boston 1976).

Google Scholar

[2] S. Gorelik: Recrystallization in Metals and Alloys (in Russian) (Metallurgy Publishers, Moscow, 1978).

Google Scholar

[3] D.L. Beke, I. Godeny, I.A. Szabo, G. Erdelyi and F.J. Kedves: Phil. Mag. A Vol. 55 (1987), p.425.

Google Scholar

[4] B.S. Bokstein and A.O. Rodin: Grain Boundary Diffusion and Grain Boundary Segregation" In Proc. Int. Conference "Mass and Charge Transport in Solids, 2000, Lido di Jesolo, Italy.

Google Scholar

[5] M. Astakhov, B.S. Bokstein, A.O. Rodin and M. Sinyaev: Izv. Vuzov Non-Ferrous Metallurgy (in Russian) Vol. 33 (1998), p.9.

Google Scholar

[6] M.I. Mendelev, D.J. Srolovitz, G.J. Ackland and S. Han: J. Mater. Res. Vol. 20 (2005), p.208.

Google Scholar

[7] R. Krishnamurthy, D.J. Srolovitz and M.I. Mendelev: Acta Mater. Vol. 55 (2007), p.5289.

Google Scholar

[8] M.I. Mendelev, A.O. Rodin and B.S. Bokstein: Def. Diff. Forum, in press (2010).

Google Scholar

[9] G. Gottstein and L.S. Shvindlerman: Grain boundary migration in metals : thermodynamics, kinetics, applications (CRC Press, Boca Raton, 1999).

DOI: 10.1201/9781420054361

Google Scholar

[10] M.I. Mendelev, H. Zhang and D.J. Srolovitz: J. Mater. Res. Vol. 20 (2005), p.1146.

Google Scholar

[11] M.I. Mendelev, J. Schmalian, C.Z. Wang, J.R. Morris and K.M. Ho: Phys. Rev. B Vol. 74 (2006), p.104206.

Google Scholar

[12] L.J. Lewis: Phys. Rev. B Vol. 44 (1991), p.4245.

Google Scholar

[13] M. Kluge and H.R. Schober: Phys. Rev. B Vol. 70 (2004), p.224209.

Google Scholar

[14] I.M. d'Heurle and A. Gandulee. In: The Nature and Behavior of Grain Boundaries, H. Hu (ed. ) (Plenum Press, NY, 1972).

Google Scholar

[15] W. Gust, S. Mayer, A. Bogel and B. Predel: J. Phys. Vol. 46 (1985), p.537.

Google Scholar

[16] B.S. Bokstein and L.I. Trusov: Def. Diff. Forum Vol. 95-98 (1993), p.445.

Google Scholar

[17] D.L. Beke, I. Godeny and F.J. Kedves: Trans. Jap. Inst. Met. Vol. 27 (1986), p.649.

Google Scholar

[18] A. Suzuki and Y. Mishin: J. Mater. Sci. Vol. 40 (2005), p.3155.

Google Scholar

[19] N. Isono, P.M. Smith, D. Turnbull and M.J. Aziz: Metall. Mater. Trans. A Vol. 27 (1996), p.725.

Google Scholar

[20] G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag and H. Mehrer: Zt. Metallkd. Vol. 86 (1995), p.122.

Google Scholar

[21] P. Keblinski, D. Wolf, S.R. Phillpot and H. Gleiter: Phil. Mag. A Vol. 79 (1999), p.2735.

Google Scholar