Role of Finite Vacancy Relaxation Rate at SHS Reactions in Nanosized Multilayers

Article Preview

Abstract:

Rate of SHS (self-propagating high-tеmperature synthesis) reactions in solid nano-sized multilayers is controlled by the time and temperature dependent vacancy concentration. The increase of reaction temperature is typically faster than the rate of vacancy generation. Therefore, the finite relaxation rate of vacancies leads to drastic slowing down of SHS. On the other hand, as-prepared vacancy supersaturation due to fast deposition on the cold substrate may lead to a certain acceleration of SHS. Influence of (1) vacancy mean free path and (2) initial vacancy supersaturation on the SHS rate is investigated numerically. In wide region of parameters the front velocity appears to be inversely proportional to the square root of vacancy mean free path length.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 309-310)

Pages:

215-222

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. G. Merzhanov: Combust. Flame Vol. 10 (1966), p.341.

Google Scholar

[2] E. Ma, C.V. Thompson, L.A. Clevenger, and K.N. Tu: Appl. Phys. Lett. Vol. 57 (1990), p.1262.

Google Scholar

[3] L.A. Clevenger, C.V. Thompson, and K.N. Tu: J. Appl. Phys. Vol. 67 (1990) 2894.

Google Scholar

[4] S. Gennari, U.A. Tamburini, F. Maglia, G. Spinolo, and Z.A. Munir: Acta Mater. Vol. 54 (2006), p.2343.

Google Scholar

[5] A.G. Merzhanov and A.S. Mukasyan: Combustion (Torus Press, Moscow, 2007).

Google Scholar

[6] A. Ya. Ishchenko, Yu.V. Falchenko, A.I. Ustinov, B.A. Movchan, G.K. Kharchenko, A.N. Muravejnik, T.V. Melnichenko, A.E. Rudenko: The Paton Welding J. Vol. 7 (2007), p.2.

Google Scholar

[7] A.I. Ustinov, Yu.V. Falchenko, A. Ya. Ischenko, G.K. Kharchenko, T.V. Melnichenko, and A.N. Muraveynik: Intermetall. Vol. 16 (2008), p.1043.

Google Scholar

[8] B. Mann, A.J. Gavens, M.E. Reiss, D. Van Heerden, G. Bao, and T.P. Weihs: J. Appl. Phys. Vol. 82 (1997), p.1178.

Google Scholar

[9] C. Wagner: Acta Metall. Vol. 17 (1969), p.99.

Google Scholar

[10] A.M. Gusak and M.V. Yarmolenko: J. Appl. Phys. Vol. 73 (1993), p.4881.

Google Scholar

[11] T.V. Zaporozhets, А.М. Gusak, and A.I. Ustinov: Mod. Electrometall. Vol. 1 (2010), p.40.

Google Scholar

[12] A.S. Rogachev, A.E. Grigoryan, E.V. Illarionov, I.G. Kanel, A.G. Merzhanov, A.N. Nosyrev, N.V. Sachkova, V.I. Khvesyuk, and P.A. Tsygankov: Fiz. Goreniya i Vzryva Vol. 40 (2004), p.45.

DOI: 10.1023/b:cesw.0000020138.58228.65

Google Scholar

[13] B.B. Khina: Int. J. Self-Propagat. High-Temp. Synth. Vol. 17 (2008), p.211.

Google Scholar

[14] U. Goesele, K.N. Tu: J. Appl. Phys. Vol. 53 (1982), p.3252. M. Mendelev P. Protsenko.

Google Scholar