Unprecedented Wealth of Information on Guest Dynamics in Nanoporous Materials from Transient Concentration Profiles

Article Preview

Abstract:

The application of interference microscopy (IFM) and infrared microscopy (IRM) to monitor the evolution of the concentration of guest molecules in nanoporous host materials opens a new field of diffusion research in condensed matter. It combines the methodical virtues of the profiling methods of solid-state diffusion studies with the benefit of the mobility enhancement in fluids. We are going to illustrate the rich options of diffusion studies provided by this novel experimental approach.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 309-310)

Pages:

177-194

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Chmelik, H. Bux, J. Caro, L. Heinke, F. Hibbe, T. Titze and J. Kärger: Phys. Rev. Lett. Vol. 104 (2010), p.085902.

DOI: 10.1103/physrevlett.104.085902

Google Scholar

[2] J. Kärger: Leipzig, Einstein, Diffusion (2nd ed., Leipziger Universitätsverlag, Leipzig, 2010).

Google Scholar

[3] J. Philibert, in: Leipzig, Einstein, Diffusion, edited by J. Kärger, Leipziger Universitätsverlag, Leipzig (2007), p.41.

Google Scholar

[4] D. Ambrosini and P. Rastogi, Eds.: Diffusion Measurement by Optical Methods: Recent Advances and Application, Vol. 46, Optics and Lasers in Engineering, Elsevier, Amsterdam (2008).

Google Scholar

[5] H. Mehrer: Diffusion in solids (Springer, Berlin, 2007).

Google Scholar

[6] P.T. Callaghan: Principles of NMR Microscopy (Clarendon Press, Oxford, 1991).

Google Scholar

[7] R. Kimmich: NMR Tomography, Diffusometry, Relaxometry (Springer, Berlin, 1997).

Google Scholar

[8] J. Kärger and W. Heink: J. Magn. Reson. Vol. 51 (1983), p.1.

Google Scholar

[9] R.M. Cotts: Nature Vol. 351 (1991), p.443.

Google Scholar

[10] R. Valiullin, J. Kärger and R. Gläser: Phys. Chem. Chem. Phys. Vol. 11 (2009), p.2833.

Google Scholar

[11] J. Kirstein, B. Platschek, C. Jung, R. Brown, T. Bein and C. Bräuchle: Nature Materials Vol. 6 (2007), p.303.

Google Scholar

[12] C. Jung, J. Kirstein, B. Platschek, T. Bein, M. Budde, I. Frank, K. Müllen, J. Michaelis and C. Bräuchle: J. Am. Chem. Soc. Vol. 130 (2008), p.1638.

DOI: 10.1021/ja075927e

Google Scholar

[13] F. Feil, C. Jung, J. Kirstein, J. Michaelis, C. Li, F. Nolde, K. Müllen and C. Bräuchle: Microporous Mesoporous Mater. Vol. 125 (2009), p.70.

DOI: 10.1016/j.micromeso.2009.01.024

Google Scholar

[14] M.J. Saxton: Biophys. J. Vol. 72 (1997), p.1744.

Google Scholar

[15] A. Zürner, J. Kirstein, M. Döblingern, C. Bräuchle and T. Bein: Nature Vol. 450 (2007), p.705.

Google Scholar

[16] L. Heinke, C. Chmelik, P. Kortunov, D.M. Ruthven, D.B. Shah, S. Vasenkov and J. Kärger: Chem. Eng. Technol. Vol. 30 (2007), p.995.

DOI: 10.1002/ceat.200700093

Google Scholar

[17] C. Chmelik, L. Heinke, J. Kärger, W. Schmidt, D.B. Shah, J.M. van Baten and R. Krishna: Chem. Phys. Lett. Vol. 459 (2008), p.141.

Google Scholar

[18] L. Heinke, D. Tzoulaki, C. Chmelik, F. Hibbe, J. van Baten, H. Lim, J. Li, R. Krishna and J. Kärger: Phys. Rev. Lett. Vol. 102 (2009), p.065901.

DOI: 10.1103/physrevlett.102.065901

Google Scholar

[19] C. Chmelik, F. Hibbe, D. Tzoulaki, L. Heinke, J. Caro, J. Li and J. Kärger: Microporous Mesoporous Mater. Vol. 129 (2010), p.340.

DOI: 10.1016/j.micromeso.2009.06.006

Google Scholar

[20] C. Chmelik, L. Heinke, R. Valiullin and J. Kärger: Chem. Eng. Technol. Vol. 82 (2010), p.779.

Google Scholar

[21] D. Tzoulaki, L. Heinke, J. Li, H. Lim, D. Olson, J. Caro, R. Krishna, C. Chmelik and J. Kärger: Angew. Chem. Int. Ed. Vol. 48 (2009), p.3525.

DOI: 10.1002/anie.200804785

Google Scholar

[22] L. Heinke, P. Kortunov, D. Tzoulaki and J. Kärger: Phys. Rev. Lett. Vol. 99 (2007), p.228301.

Google Scholar

[23] J. Kärger, F. Stallmach, R. Valiullin and S. Vasenkov, in: NMR Imaging in Chemical Engineering, edited by S. Stapf and S. -I. Han, Wiley-VCH, Weinheim (2006), p.231.

DOI: 10.1002/3527607560.ch3a

Google Scholar

[24] T. Binder, C. Chmelik, L. Heinke, F. Hibbe, J. Kärger, T. Titze and D. Tzoulaki, in: Diffusion Fundamentals III, edited by C. Chmelik, N.K. Kanellopoulos, J. Kärger and D. Theodorou, Leipziger Universitätsverlag, Leipzig (2009), p.205.

DOI: 10.1103/physrevlett.102.065901

Google Scholar

[25] C. Chmelik, N.K. Kanellopoulos, J. Kärger and D. Theodorou: Diffusion Fundamentals III (Leipziger Universitätsverlag, Leipzig, 2009).

Google Scholar

[26] H.J.V. Tyrrell and R.K. Harris: Diffusion in Liquids (Butterworth, London, 1984).

Google Scholar

[27] U. Schemmert, J. Kärger and J. Weitkamp: Microporous Mesoporous Mater. Vol. 32 (1999), p.101.

Google Scholar

[28] J. Kärger, P. Kortunov, S. Vasenkov, L. Heinke, D.B. Shah, R.A. Rakoczy, Y. Traa and J. Weitkamp: Angew. Chem. Int. Ed. Vol. 45 (2006), p.7846.

DOI: 10.1002/anie.200602892

Google Scholar

[29] F. Hibbe: Diploma thesis, Universität Leipzig, Leipzig (2008).

Google Scholar

[30] J. Kärger, R. Danz and J. Caro: Feingerätetechnik Vol. 27 (1978), p.539.

Google Scholar

[31] J. Kärger and D.M. Ruthven: Diffusion in Zeolites and Other Microporous Solids (Wiley & Sons, New York, 1992).

Google Scholar

[32] U. Schemmert: PhD Thesis, Universität Leipzig, Leipzig (2001).

Google Scholar

[33] U. Schemmert, J. Kärger, C. Krause, R.A. Rakoczy and J. Weitkamp: Europhys. Lett. Vol. 46 (1999), p.204.

Google Scholar

[34] L. Heinke, P. Kortunov, D. Tzoulaki, M. Castro, P.A. Wright and J. Kärger: Europhys. Lett. Vol. 81 (2008), p.26002.

DOI: 10.1209/0295-5075/81/26002

Google Scholar

[35] P.R. Griffiths and J.A. des Haseth: Fourier Transform Infrared Spectrometry (Wiley & Sons, New York, 1986).

Google Scholar

[36] H.G. Karge, W. Niessen and H. Bludau: Applied Catalysis A-General. Vol. 146 (1996), p.339.

Google Scholar

[37] M. Hermann, W. Niessen and H.G. Karge, in: Catalysis by Microporous Materials, edited by H.K. Beyer, H.G. Karge, I. Kiricsi and J.B. Nagy, Elsevier, Amsterdam (1995), p.131.

Google Scholar

[38] W. Niessen and H.G. Karge: Microporous Mater. Vol. 1 (1993), p.1.

Google Scholar

[39] R.G. Bell: Introductory Fourier Transform Spectroscopy (Academic Press, New York, 1972).

Google Scholar

[40] E.N. Lewis, P.J. Treado, R.C. Reeder, G.M. Story, A.E. Dowrey, C. Marcott and I.W. Levin: Analytical Chemistry Vol. 67 (1995), p.3377.

DOI: 10.1021/ac00115a003

Google Scholar

[41] Y. Roggo, A. Edmond, P. Chalus and M. Ulmschneider: Anal. Chim. Acta Vol. 535 (2005), p.79.

Google Scholar

[42] T. Titze: Diploma Thesis, Leipzig (2009).

Google Scholar

[43] J. Crank: The Mathematics of Diffusion (Clarendon Press, Oxford, 1975).

Google Scholar

[44] H.G. Karge and W. Niessen: Cat. Today Vol. 8 (1991), p.451.

Google Scholar

[45] J. Kärger: Ind. Eng. Chem. Res. Vol. 41 (2002), p.3335.

Google Scholar

[46] J. Kärger and D. Freude: Chem. Eng. Technol. Vol. 25 (2002), p.769.

Google Scholar

[47] L. Heinke and J. Kärger: J. Chem. Phys. Vol. 130 (2009), p.044707.

Google Scholar

[48] L. Heinke: PhD thesis, Leipzig University, Leipzig (2008).

Google Scholar

[49] C. Baerlocher, L.B. McCusker and D.H. Olson: Atlas of Zeolite Framework Types (6 ed., Elsevier, Amsterdam, 2007).

Google Scholar

[50] R.A. Rakoczy, Y. Traa, P. Kortunov, S. Vasenkov, J. Kärger and J. Weitkamp: Microporous Mesoporous Mater. Vol. 104 (2007), p.1195.

DOI: 10.1016/j.micromeso.2007.01.046

Google Scholar

[51] P. Kortunov, L. Heinke, S. Vasenkov, C. Chmelik, D.B. Shah, J. Kärger, R.A. Rakoczy, Y. Traa and J. Weitkamp: J. Phys. Chem. B Vol. 110 (2006), p.23821.

DOI: 10.1021/jp065112c

Google Scholar

[52] L. Pan, B. Parker, X. Huang, D. Olson, L. J. -Y. and J. Li: J. Am. Chem. Soc. Vol. 128 (2006), p.4180.

Google Scholar

[53] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe and O.M. Yaghi: Proc. Natl. Acad. Sci. USA Vol. 103 (2006), p.10186.

DOI: 10.1073/pnas.0602439103

Google Scholar

[54] P. Kortunov, C. Chmelik, J. Kärger, R.A. Rakoczy, D.M. Ruthven, Y. Traa, S. Vasenkov and J. Weitkamp: Adsorption Vol. 11 (2005), p.235.

DOI: 10.1007/s10450-005-5396-7

Google Scholar

[55] C.N. Satterfield: Mass Transfer in Heterogeneous Catalysis (M.I.T. Press, Cambridge, Massachusetts and London, England, 1970).

Google Scholar

[56] N.Y. Chen, T.F. Degnan and C.M. Smith: Molecular Transport and Reaction in Zeolites (VCH, New York, 1994).

Google Scholar

[57] F. Hibbe, C. Chmelik, L. Heinke, J. Li, D.M. Ruthven, D. Tzoulaki and J. Kärger: Nature (2010) submitted.

Google Scholar

[58] L. Heinke and J. Kärger: Phys. Rev. Lett. (2010) submitted.

Google Scholar

[59] A. Jentys, R.R. Mukti and J.A. Lercher: J. Phys. Chem. B Vol. 110 (2006), p.17691.

Google Scholar

[60] S. Brandani, in: Proceedings 4th Pacific Basin Conference on Adsorption Science and Technology, edited by L. Zhou, World Scientific, Singapore, Hackensack, NJ (2007).

Google Scholar

[61] F. Schüth, K.S.W. Sing and J. Weitkamp: Handbook of Porous Solids (Wiley-VCH, Weinheim, 2002).

Google Scholar

[62] R. Krishna and D. Paschek: Phys. Chem. Chem. Phys. Vol. 4 (2002), p.1891.

Google Scholar

[63] R. Krishna: J. Phys. Chem. C Vol. 113 (2009), p.19756.

Google Scholar

[64] D.M. Ruthven, in: Molecular sieves - science and technology: adsorption and diffusion, edited by H.G. Karge and J. Weitkamp, Springer, Berlin, Heidelberg (2008), Vol. 7, p.1.

Google Scholar

[65] F.J. Keil, R. Krishna and M.O. Coppens: Rev. Chem. Eng. Vol. 16 (2000), p.71. I. Szabo and G. Schmitz.

Google Scholar