Thermally Activated Relaxation and Hysteretic Internal Friction in Ultrafine Grained Copper

Article Preview

Abstract:

Temperature and amplitude dependent internal friction (TDIF and ADIF) in ultrafine-grained copper (99.95% Cu) specimens processed by equal channel angular extrusion by route BC in 1, 4, and 8 passes and then subjected to annealing is investigated by means of dynamical mechanical analyzer DMA Q800 in the temperature range from -100 to 550 °C, amplitude range from 10-6 to 10-3, and frequency range from 0.05 to 100 Hz. Two IF peaks were registered and explained by structural relaxation due to the recrystallisation process and by thermally activated grain boundary relaxation with broad distribution of relaxation times. Increase in amplitude dependent damping in ultrafine-grained copper is due to dislocation but not grain boundary contribution.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 309-310)

Pages:

209-214

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.S. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press, New York and London, 1972).

Google Scholar

[2] J. Ross Mackdonald: Phys. Vol. 28 (1962) 485-492; J. Chem. Phys. Vol. 36 (1962), p.345.

Google Scholar

[3] L.B. Magalas and M. Majewski: Mater. Sci. Eng. A Vol. 521–522 (2009), p.384.

Google Scholar

[4] Y. Amouyal, S.V. Divinski, L. Klinger, and E. Rabkin: Acta Materialia. Vol. 56 (2008), p.5500.

DOI: 10.1016/j.actamat.2008.07.029

Google Scholar

[5] I.S. Golovin, S.B. Kustov, V. Yu. Zadorozhnyy, T.S. Andriyanova, and M.N. Yakovleva: Metallofiz. Nov. Tekhnol. Vol. 32(2) (2010), p.175.

Google Scholar

[6] Y. Estrin, N.V. Isaev, S.V. Lubenets, S.V. Malykhin, A.T. Pugachov, V.V. Pustovalov, E.N. Reshetnyak V.S. Fomenko, L.S. Fomenko, S.E. Shumilin, M. Janecek, and R.J. Hellmig: Acta Mater. Vol. 54 (2006), p.5581.

DOI: 10.1016/j.actamat.2006.07.036

Google Scholar

[7] R.J. Hellmig, M. Janecek, B. Hadzima, O.V. Gendelman, M. Shapiro, X. Molodova, and A. Springer, Y. Estrin: Mater. Trans. Vol. 49 (2008), p.31.

DOI: 10.2320/matertrans.me200717

Google Scholar

[8] I.S. Golovin: Phys. Met. Metallogr. Vol. 111 (2010) n 2, Accepted, in press.

Google Scholar

[9] I.S. Golovin, V. Yu. Zadoroznnyy, and Y.Z. Estrin: Submitted to Solid State Physics.

Google Scholar