Diffusion and Electrophoretic Transport of DNA Polymers in Microfluidic Channels Made of PDMS

Article Preview

Abstract:

DNA molecules can be transported through microchannels with help of electrophoresis and flow. Confinement of DNA molecules leads to elongation of their unconstrained equilibrium configuration when passing the microchannel. Application of electrical fields reduces the mobility and entails DNA trapping because of high gradients of the field due to a decrease in the channels’ magnitude. Microfluidic channels in polydimethylsiloxane (PDMS) were formed by soft replica molding technology combining micro- and nanofluidic features. The applicability of the hybrid micro- and nanofluidic PDMS structures for single molecule observation and manipulation was demonstrated by introducing single molecules of λ-DNA into the channels using optimized conditions for the applied potential and flow.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

1091-1096

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.T. Mannion, H.G. Craighead: Biopolymers Vol. 85 (2007), p.131.

Google Scholar

[2] O.B. Bakajin, T.A.J. Duke, C.F. Chou, S.S. Chan, R.H. Austin, E.C. Cox: Physical Review Letters Vol. 80 (1998), p.2737.

Google Scholar

[3] L.H. Thamdrup, A. Klukowska, A. Kristensen: Nanotechnology Vol. 19 (2008), p.125301.

Google Scholar

[4] J.O. Tegenfeldt, C. Prinz, et al.: Anal Bioanal Chem Vol. 378 (2004), p.1678.

Google Scholar

[5] F. Brochard, P.G. de Gennes: The Journal of Chemical Physics Vol. 67 (1977), p.52.

Google Scholar

[6] T. Odijk: Macromolecules Vol. 16 (1983), p.1340.

Google Scholar

[7] D.J. Bonthuis, C. Meyer, D. Stein, C. Dekker: Phys Rev Lett Vol. 101 (2008), p.108303.

Google Scholar

[8] Y. Liu, B. Chakraborty: Physical Biology Vol. 5 (2008), p.026004.

Google Scholar

[9] W. Reisner, K.J. Morton, et al.: Physical Review Letters Vol. 94 (2005), p.196101.

Google Scholar

[10] A. Balducci, P. Mao, J.Y. Han, P.S. Doyle: Macromolecules Vol. 39 (2006), p.6273.

Google Scholar

[11] J.T. Mannion, C.H. Reccius, J.D. Cross, H.G. Craighead: Biophysical Journal Vol. 90 (2006), p.4538.

Google Scholar

[12] R. Riehn, M. Lu, Y. Wang, S. Lim, E. Cox, R. Austin: Proc Natl Acad Sci USA Vol. 102 (2005), p.10012.

Google Scholar

[13] J.C. McDonald, D.C. Duffy, et al.: Electrophoresis Vol. 21 (2000), p.27.

Google Scholar

[14] C.M. Sotomayor Torres, S. Zankovych, et al.: Mater. Sci. Eng. C Vol. 23 (2003), p.23.

Google Scholar

[15] F. Gast, P. Dittrich, et al.: Microfluidics and Nanofluidics Vol. 2 (2006), p.21.

Google Scholar

[16] H. Schmid, B. Michel: Macromolecules Vol. 33 (2000), p.3042.

Google Scholar

[17] Z. Yuan, A.L. Garcia, G.P. Lopez, D.N. Petsev: Electrophoresis Vol. 28 (2007), p.595.

Google Scholar

[18] T.T. Perkins, D.E. Smith, R.G. Larson, S. Chu: Science Vol. 268 (1995), p.83.

Google Scholar

[19] G.C. Randall, K.M. Schultz, P.S. Doyle: Lab Chip Vol. 6 (2006), p.516.

Google Scholar

[20] E.A. Strychalski, S.L. Levy, H.G. Craighead: Macromolecules Vol. 41 (2008), p.7716.

Google Scholar

[21] M.K. Cheezum, W.F. Walker, W.H. Guilford: Biophysical Journal Vol. 81 (2001) p.2378.

Google Scholar

[22] I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. Keyser, F. Kremer: Journal of Colloid and Interface Science Vol. 337 (2009), p.260.

DOI: 10.1016/j.jcis.2009.05.017

Google Scholar

[23] A. Sischka, K. Toensing, et al.: Biophys J Vol. 88 (2005), p.404.

Google Scholar

[24] C. Kanony, B. Akerman, E. Tuite: Journal of the American Chemical Society Vol. 123 (2001), p.7985.

Google Scholar