Growth of Multi-Shaped Zinc Oxide Nanostructures Using C-Axis Oriented Zinc Oxide Thin Film as a Seeded Catalyst via Hydrothermal Aqueous Chemical Growth Method

Article Preview

Abstract:

Zinc oxide (ZnO) nanostructures with different kind of morphologies were synthesized on glass substrates via the hydrothermal aqueous chemical growth method utilizing c-axis oriented ZnO thin film as seeded catalyst. By preparing ZnO thin film at different molar concentrations between 0.2~1.0 M, oval shaped ZnO nanostructures mixed with ZnO nanowires and rod shaped ZnO nanostructures mixed with ZnO nanowires were produced after immersion process into 0.0002 M zinc nitrate solution for 24 hour. The XRD spectra show synthesized ZnO nanostructures were ZnO hexagonal wurtzite crystalline. The photoluminescence (PL) measurement indicates the luminescences of the samples were depending on the shapes of ZnO nanostructure.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

1126-1131

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Srinivasan, N. Gopalakrishnan, Y.S. Yu, R. Kesavamoorthy and J. Kumar: Superlattices and Microstructures Vol. 43 (2008), p.113.

Google Scholar

[2] L. Wang: Mater. Today Vol. 7 (2004), p.26.

Google Scholar

[3] H. Frenzel, A. Lajn, M. Brandt, H. von Wenckstern, G. Biehne, H. Hochmuth, M. Lorenz and M. Grundmann: Applied Physics Letters Vol. 92 (2008), pp.192108-1.

DOI: 10.1063/1.2926684

Google Scholar

[4] D. -I. Suh, S. -Y. Lee, T. -H. Kim , J. -M. Chun, E. -K. Suh, O. -B. Yang and S. -K. Lee: Chemical Physics Letters Vol. 442 (2007), p.348.

Google Scholar

[5] D.C. Kim, W.S. Han, B.H. Kong, H.K. Cho and C.H. Hong: Physica B Vol. 401-402 (2007), p.386.

Google Scholar

[6] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis and G. Kiriakidis: Thin Solid Films Vol. 515 (2006), p.551.

DOI: 10.1016/j.tsf.2005.12.295

Google Scholar

[7] J.B.K. Law and J.T.L. Thong: Nanotechnology Vol. 19 (2008), p.205502.

Google Scholar

[8] X. Xing, K. Zheng, H. Xu, F. Fang, H. Shen, J. Zhang, J. Zhu, C. Ye, G. Cao, D. Sun and G. Chen: Micron Vol. 37 (2006) p.370.

DOI: 10.1016/j.micron.2005.10.010

Google Scholar

[9] A. Umar, S.H. Kim, E.K. Suh and Y.B. Hahn: Chemical Physics Letters Vol. 440 (2007), p.110.

Google Scholar

[10] R. Zhang and L.L. Kerr: Journal of Solid State Chemistry Vol. 180 (2007), p.988.

Google Scholar

[11] S. Baruah and J. Dutta: J Sol-Gel Sci Technol Vol. 50 (2009), pp.456-464.

Google Scholar

[12] M. Wei, D. Zhi and J.L. MacManus-Driscoll: Nanotechnology Vol. 16 (2005), pp.1364-1368.

Google Scholar

[13] Michael N.R. Ashfold, Rachel P. Doherty, N. George Ndifor-Angwafor, D. Jason Riley and Ye Sun: Thin Solid Films Vol. 515 (2007), p.8679.

DOI: 10.1016/j.tsf.2007.03.122

Google Scholar

[14] Y. Jiang, M. Wu, X. Wu, Y. Sun and H. Yin: Materials Letters Vol. 63 (2009), pp.275-278.

Google Scholar

[15] S.F. Wang, T.Y. Tseng, Y.R. Wang, C.Y. Wang and H.C. Lu: Ceramics International Vol. 35 (2009), pp.1255-1260.

Google Scholar

[16] Y. Masuda, N. Kinoshita and K. Koumoto: Electrochimica Acta Vol. 53, (2007), p.174.

Google Scholar

[17] Z.G. Chen, A. Ni, F. Li, H. Cong, H.M. Cheng and G.Q. Lu: Chemical Physics Letters Vol. 434 (2007), p.302.

Google Scholar

[18] B. Cheng, X. Wang, L. Liu and L. Guo: Materials Letters Vol. 62 (2008), p.3101.

Google Scholar