[1]
Tanasawa, I. and Lior, N., 1992, Heat and Mass Transfer in Material Processing, Hemisphere, Washington, D. C.
Google Scholar
[2]
Viskanta, R. and Bergman, T. L., 1998, Heat Transfer in Material Processing, in Handbook of Heat Transfer, Chap. 18, McGraw-Hill, New York.
Google Scholar
[3]
Shuja, S. Z., Yilbas, B. S., and Budair, M. O., Modeling of Laser Heating of Solid Substance Including Assisting Gas Impingement, Numer. Heat Transfer A, 33 (1998) 315-339.
DOI: 10.1080/10407789808913941
Google Scholar
[4]
Bianco, N., Manca, O. and Nardini, S., 2001, Comparison between Thermal Conductive Models for Moving Heat Sources in Material Processing, ASME HTD, 369-6, pp.11-22.
DOI: 10.1115/imece2001/htd-24331
Google Scholar
[5]
Rosenthal, D., Mathematical theory of heat distribution during welding and cutting, Welding Journal, 20.
Google Scholar
[5]
(1941) 220-234.
Google Scholar
[6]
Rykalin, N.N., and Nikolaev, A.V., Welding Arc heat Flow, Welding in World, 9[3-4] (1971) 112-132.
Google Scholar
[7]
Malmuth N.D., Hall W.F., Davis B.I., and Rosen C.D., Transient Thermal Phenomena and Weld Geometry in GTAW, Welding Journal 53.
Google Scholar
[9]
(1974) 388.
Google Scholar
[8]
Grosh R.J., Trabant E.A., Arc Welding Temperature, Welding Journal, 35.
Google Scholar
[3]
(1956) 396-400.
Google Scholar
[9]
Lin, M.L., Influence of Surface Depression and Convection on Weld Pool Geometry, Maters Thesis, MIT, Cambridge, MA, (1982).
Google Scholar
[10]
Nestor, O.H., Heat Intensity and Current Density Distribution at Anode of High Current Inert Gas Arcs, Journal of Applied Physics, 33.
DOI: 10.1063/1.1728803
Google Scholar
[50]
(1967) 1638-1648.
Google Scholar
[11]
Eager, T. W., and Tsai, N. S., Temperature fields produced by traveling distributed heat sources, Welding Journal, 62.
Google Scholar
[12]
(1983) 346-355.
Google Scholar
[12]
Jeong, S. K., and Cho, H. S., An analytical solution to predict the transient temperature distribution in fillet arc welds, Welding Journal, 76.
Google Scholar
[6]
(1997) 223-232.
Google Scholar
[13]
Goldak, J., Chakravarti, A., and Bibby, M. 1985. A Double Ellipsoid Finite Element Model for Welding Heat Sources, IIW Doc. No. 212-603-85.
Google Scholar
[14]
Nguyen N.T., Ohta,A., Suzuki,N., Maeda,Y., Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Source, Welding Journal, August, 1999, 265-274.
Google Scholar
[15]
Fachinotti, V.D., Cardona, A., Semi-analytical Solution of the Thermal Field Induced by a Moving Double-Ellipsoidal Welding Heat Source in a Semi-Infinite Body, Asociacion Argentina de Mecanica Computacional, 10-13 November 2008, 1519-1530.
DOI: 10.1002/cnm.1324
Google Scholar
[16]
Nguyen, N.T., Mai, Y.W., Simpson, S. , Ohta, A., Analytical Approximate Solution for Double Ellipsoidal Heat Source in Finite Thick Plate, Welding Research, March 2004, 82s-93s.
Google Scholar
[17]
Ravichandran, G., Raghupathy, V.P., Ganesan, N., Analysis of Temperature Distribution during Circumferential Welding of Cylindrical and Spherical Components using the Finite Element Method, Computer and Structures, 59.
DOI: 10.1016/0045-7949(95)00263-4
Google Scholar
[2]
(1996) 225-255.
Google Scholar
[18]
Chandra, U., Determination of residual stresses due to girth butt welds in pipes, Trans. ASME Journal of Pressure Vessel Technology, 107 (1985) 178-184.
DOI: 10.1115/1.3264431
Google Scholar
[19]
Akkus, A., Temperature distribution study in resistance spot welding, Journal of Scientific & Industrial Research, 68 (2009) 199-202 20] Veenstra, P.C., Hults, A., A Thermal Model of Spot Welding Process, (Greve Offset NV, Eindhoven), (1969).
Google Scholar
[21]
Bentley, K.P., Greenwod, J.A., Knowlson, P., Baker, R.G., Temperature distribution in spot welds, British Welding Journal, 10 (1963) 613-619.
Google Scholar
[22]
Kermanpur, A., Shamanian, M., Esfahani, V., Yeganesh, Three – dimensional thermal simulation and experimental investigation of GTAW circumferentially butt –welded Incoloy 800 pipes, Journal of Materials Processing Technology, 199 (2009) 110-21.
DOI: 10.1016/j.jmatprotec.2007.08.009
Google Scholar
[23]
Maheshwari, A., Arya, H.A., Kumar, S., Singh, C., Experimental Determination of weld pool temperature and to generate temperature profile for GMAW, Proc. 2nd International Conference on Production and industrial engineering, NIT, Jalandhar, India, 2010, 45-48.
Google Scholar
[24]
Gutierrez, G., Araya, j.G., Temperature Distribution in a finite Solid due to a Moving laser Beam, Proc. IMECE2003-43545, 2003 ASME Int. Mech. Eng. Congr., Washington, D.C. November 15-21.
Google Scholar
[25]
Bianco, N., Manca, O., Naso, V., Numerical analysis of Transient Temperature Fields in Solids by a Moving Heat Source, HEFAT2004, 3rd Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics, paper n BN2, 21-24 June 2004, Capetown, South Africa.
Google Scholar
[26]
Bianco, N., Manca, O., Nardini, S. , Two Dimensional Transient Analysis of Temperature Distribution in a Solid Irradiated by a Gaussian Lesser Source, Proc. ESDA2004-58286 7th Biennial Conf. on Engineering Systems Design and Analysis July 19-22, 2004, Manchester, United Kingdom.
DOI: 10.1115/esda2004-58286
Google Scholar
[27]
Bianco, N., Manca, O., Nardini, S., Tamburrino, S., Transient Heat Conduction in Solids Irradiated by a Moving Heat Source, Excerpt from the Proceedings of COMSOL User Conference 2006, Milano.
DOI: 10.4028/www.scientific.net/ddf.297-301.1445
Google Scholar
[28]
Ohring, S., Lugt, H.J. , Numerical Simulation of a time dependent 3D GMA weld pool due to a Moving Arc, Welding Journal, 79.
Google Scholar
[120]
(1999), 416.
Google Scholar
[29]
Mundra, K., et. al., Weld Metal Microstructure Calculation from Fundamentals of Transport Phenomena in the Arc Welding of Low –Alloy Steels, Welding Journal, 76 (1997) 163-171.
Google Scholar
[30]
Biswas, P., Mandal, N.R., Thermo mechanical Finite Element Analysis and Experimental Investigation of Single –Pass Single – Sided Submerged Arc Welding of C-Mn Steel Plates, Proc. IMechE Vol. 224 Part B: J. Engineering Manufacture, 627-639.
DOI: 10.1243/09544054jem1624
Google Scholar
[31]
Ogwuagwu, Vincent, O., Simulation of Heat Transfer in Thin Plates during Arc Welding, AU J.T. 10 (1): July 2006, 52-54.
Google Scholar
[32]
Postacioglu, N., Kapadia , P., Dowden, J.M. , The Thermal Stress generated by a Moving Elliptical Weld pool in the Welding of thin Metal Sheets, Journal of Applied Physics, 30 (1997) 2304-2312.
DOI: 10.1088/0022-3727/30/16/008
Google Scholar
[33]
Yeh, R., et. al., Analysis of welding on Aluminum Plates, Journal of Marine Science and Technology, 11.
Google Scholar
[4]
(2003) 213-220.
Google Scholar
[34]
Gupta, V. K. and Parmar, R. S., Fractional factorial techniques to predict dimensions of the weld bead in automatic submerged arc welding, Journal of the Institution of Engineers (India) 70 (1986) 67-71.
Google Scholar
[35]
M. Van Elsen, Baelmans, M., Mercelis, P., Kruth , J. -P. , Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing, International Journal of Heat and Mass Transfer, 50 (2007) 4872–4882.
DOI: 10.1016/j.ijheatmasstransfer.2007.02.044
Google Scholar
[36]
Kumar, A., Deb Roy, T., Calculation of Three dimensional electromagnetic force field during arc welding, Journal of Applied Physics, 94.
Google Scholar
[2]
(2003) 1267-1277.
Google Scholar
[37]
Scutelnicu, E., Iordachescu, M., Blasco, M., D. Iordachescu, Arc Welding of Dissimilar Metals: FEA and Experiments, Trends in Welding Research, Proceedings of the 8th International Conference, pp.241-246.
Google Scholar
[38]
Rong-Hua Yeh, Shih-Pin Liaw, Hong-Bin Yu, Thermal Analysis of Welding on Aluminum Plates, Journal of Marine Science and Technology, 11.
Google Scholar
[4]
(2003) 213-220.
Google Scholar
[39]
Klobcar, D., Tusek, J., Taljat, B., Finite element modeling of GTA weld surfacing applied to hot-work tooling, Computational Materials Science, 31 (2004) 368–378.
DOI: 10.1016/j.commatsci.2004.03.022
Google Scholar
[40]
Prediction of Weld Pool and Reinforcement Dimensions of GMA Welds Using a Finite-Element Model, Metallurgical Transactions B, 20 (1989) 937-947.
DOI: 10.1007/bf02670199
Google Scholar
[41]
Kumar, A., DebRoy, Guaranteed fillet weld geometry from heat transfer model and multivariable optimization, International Journal of Heat and Mass Transfer, 47 (2004) 5793-5806.
DOI: 10.1016/j.ijheatmasstransfer.2004.06.038
Google Scholar
[42]
Goldak, J., Chakraborty, A., And Bibby, M., A New Finite Element Model for Welding Heat Sources, Metallurgical Transactions B, 15 (1984) 299-305.
DOI: 10.1007/bf02667333
Google Scholar
[43]
Kumar, S., Bhaduri, S.C., Three-Dimensional Finite Element Modeling of Gas Metal-Arc Welding, Metallurgical Transactions B, 25 (1994) 935-941.
DOI: 10.1007/bf02663394
Google Scholar
[44]
0. M., Grong, 0., Ryum, N., and Christensen, N. , SINTEF ; HAZ Grain Growth Mechanism in Welding of Low Carbon Micro alloyed Arselsen, Acta Metallurgica, 34.
DOI: 10.1016/0001-6160(86)90125-2
Google Scholar
[9]
(1986) 1807-1815.
Google Scholar
[45]
Mahapatra, M.M., Datta, G.L., Pradhan, B., Mandal, N.R., Three-dimensional finite element analysis to predict the effects of SAW process parameters on temperature distribution and angular distortions in single-pass butt joints with top and bottom reinforcements, International Journal of Pressure Vessels and Piping, 83 (2006).
DOI: 10.1016/j.ijpvp.2006.07.011
Google Scholar
[46]
Ali, Y. M, Zhang, L.C., Relativistic Heat Conduction, International Journal of Heat and Mass Transfer, 48 (2005) 2397-2406.
DOI: 10.1016/j.ijheatmasstransfer.2005.02.003
Google Scholar
[47]
Ali, Y. M, Zhang, L.C., Relativistic Heat Source, International Journal of Heat and Mass Transfer, 48 (2005) 2741-2758.
DOI: 10.1016/j.ijheatmasstransfer.2005.02.004
Google Scholar
[48]
Goldak, J.A., Akhlaghi, M., Computational Welding Mechanics, Springer, p.31.
Google Scholar
[49]
Kumar, A., Deb Roy, T., Calculation of Three dimensional electromagnetic force field during arc welding, Journal of Applied Physics, 94.
Google Scholar
[2]
(2003) 1267-1277.
Google Scholar
[50]
Gunaraj, G., Murugan, N., Prediction of Heat-Affected Zone Characteristics in Submerged Arc Welding of Structural Steel Pipes, Welding Research, January 2002, 94-98.
Google Scholar