[1]
Pillai, K.R., Ghosh, A., Chattopadhyaya, S., Sarkar, P.K. and K. Mukherjee, Some Investigations on the Interactions of the Process Parameters of Submerged Arc Welding, Manufacturing Technology & Research, 3[1-2] (2007) 57-67.
Google Scholar
[2]
Gunarajan, V., Murugan, N., Prediction of Heat Affected Zone Charecteristics in Submerged Arc welding of Structural Steel Pipes, Welding Research, January, 2002, 94-98.
Google Scholar
[3]
Ghosh,A., Chattopadhyaya, S., Transient Heat Conduction of Submerged Arc Welded Plates, Proc. Int. Conf. on Advanced Topics in manufacturing Engineering and Management, University of Czestochowa, Faculty of Management, Czestochowa, 2010, 32-35.
Google Scholar
[4]
John A. Goldak and Mehdi Akhlaghi: Computational Welding Mechanics, 2005, Springer, 71-115.
Google Scholar
[5]
Ghosh,A., Chattopadhyaya, S., Analytical Solution for Transient Temperature Distribution of Semi-Infinite Body Subjected to 3-D Moving Heat Source of Submerged Arc Welding process, Proc. Int. Conf. on Mechanical and Electrical Technology, Singapore, September 10-12, 2010, 733-737.
DOI: 10.1109/icmet.2010.5598459
Google Scholar
[6]
Eager, T. W. , Tsai, N. S., Temperature fields produced by traveling distributed heat sources, Welding Journal, 62.
Google Scholar
[12]
(1983) 346-355.
Google Scholar
[7]
Jeong, S. K. , Cho, H. S., An analytical solution to predict the transient temperature distribution in fillet arc welds, Welding Journal, 76.
Google Scholar
[6]
(1997) 223-232.
Google Scholar
[8]
Goldak, J., Chakravarti, A., Bibby, M., A Double Ellipsoidal Finite Element Model for Welding Heat Source, IIW Doc. No. 212-603-85.
Google Scholar
[9]
Nguyen, N.T., Ohta, A., Matsuoka, K., Suzuki, N., and Maeda, Y. , Analytical Solution for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources, Welding Research, August 1999, 265-274.
Google Scholar
[10]
Fachinotti, V.D., Cardona, A., Semi-analytical Solution of the Thermal Field Induced by a Moving Double-Ellipsoidal Welding Heat Source in a Semi-Infinite Body, Asociacion Argentina de Mecanica Computacional 10-13 Noviembre 2008, 1519-1530.
DOI: 10.1002/cnm.1324
Google Scholar
[11]
Nguyen, N.T., Mai, Y.W., Simpson, S. , Ohta, A. , Analytical Approximate Solution for Double Ellipsoidal Heat Source in Finite Thick Plate, Welding Research, March 2004, 82-93.
Google Scholar
[12]
Ravichandran, G., Raghupathy, V.P., Ganesan, N., Analysis of Temperature Distribution during Circumferential Welding of Cylindrical and Spherical Components using the Finite Element Method, Computers and Structures, 59.
DOI: 10.1016/0045-7949(95)00263-4
Google Scholar
[2]
(1996) 225-255.
Google Scholar
[13]
Chandra, U., Determination of residual stresses due to girth butt welds in pipes, Trans. ASME Journal of Pressure Vessel Technology, 107 (1985) 178-184.
DOI: 10.1115/1.3264431
Google Scholar
[14]
Akkus, A., Temperature distribution study in resistance spot welding, Journal of Scientific & Industrial Research, 68 (2009) 199-202.
Google Scholar
[15]
Veenstra, P.C., Hults, A., A Thermal Model of Spot Welding Process, (Greve Offset NV, Eindhoven), (1969).
Google Scholar
[16]
Bentley, K.P., Greenwod, J.A., Knowlson, P., Baker, R.G., Temperature distribution in spot welds, British Welding Journal, 10 (1963) 613-619.
Google Scholar
[17]
Kermanpur, A., Shamanian, M., Esfahani, V., Yeganesh, Three – dimensional thermal simulation and experimental investigation of GTAW circumferentially butt–welded Incoloy 800 pipes, Journal of Material Processing Technology 199 (2009) 110-21.
DOI: 10.1016/j.jmatprotec.2007.08.009
Google Scholar
[18]
Maheshwari, A., Arya, H.A., Kumar, S., Singh,C., Experimental Determination of weld pool temperature and to generate temperature profile for GMAW, Proc. 2nd International Conference on Production and industrial engineering, NIT, Jalandhar, India, 2010, paper 45.
Google Scholar
[19]
Gutierrez, G., Araya, j.G., Temperature Distribution in a finite Solid due to a Moving laser Beam, Proc. IMECE2003-43545, 2003 ASME Int. Mech. Eng. Congr., Washington, DC November 15-21.
Google Scholar
[20]
Bianco, N., Manca, O., Naso, V., Numerical analysis of Transient Temperature Fields in Solids by a Moving Heat Source, HEFAT2004, 3rd Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics, paper n BN2, 21-24 June 2004, Capetown, South Africa.
Google Scholar
[21]
Bianco, N., Manca, O., Nardini, S. , Two Dimensional Transient Analysis of Temperature Distribution in a Solid Irradiated by a Gaussian Lesser Source, Proc. ESDA2004-58286 7th Biennial Conf. on Engineering Systems Design and Analysis July 19-22 2004, Manchester, United Kingdom.
DOI: 10.1115/esda2004-58286
Google Scholar
[22]
Bianco, N., Manca, O., Nardini, S., Tamburrino, S., Transient Heat Conduction in Solids Irradiated by a Moving Heat Source, Excerpt from the Proceedings of COMSOL User Conference 2006 , Milano.
DOI: 10.4028/www.scientific.net/ddf.297-301.1445
Google Scholar
[23]
Ohring, S., Lugt, H.J. , Numerical Simulation of a time dependent 3D GMA weld pool due to a Moving Arc, Welding Journal, 79.
Google Scholar
[120]
(1999) 416.
Google Scholar
[24]
Mundra, K., et al., Weld Metal Microstructure Calculation from Fundamentals of Transport Phenomena in the Arc Welding of Low –Alloy Steels, Welding Journal, 1997, April 76, 163-171.
Google Scholar
[25]
Biswas, P., Mandal, N.R.: Thermo mechanical Finite Element Analysis and Experimental Investigation of Single –Pass Single – Sided Submerged Arc Welding of C-Mn Steel Plates, Proc. IMechE Vol. 224 Part B: J. Engineering Manufacture, 627-639.
DOI: 10.1243/09544054jem1624
Google Scholar
[26]
Ogwuagwu, Vincent, O., Simulation of Heat Transfer in Thin Plates during Arc Welding, AU J.T. 10 (1): July 2006, 52-54.
Google Scholar
[27]
Postacioglu, N., Kapadia , P., Dowden, J.M. , The Thermal Stress generated by a Moving Elliptical Weld pool in the Welding of thin Metal Sheets, Journal of Applied Physics, 30 (1997) 2304-2312.
DOI: 10.1088/0022-3727/30/16/008
Google Scholar
[28]
Yeh, R., et al., Analysis of welding on Aluminum Plates, Journal of Marine Science and Technology, 11.
Google Scholar
[4]
(2003) 213-220.
Google Scholar
[29]
Prediction of Weld Pool and Reinforcement Dimensions of GMA Welds Using a Finite-Element Model, Metallurgical Transactions B, 20 (1989) 937-947.
DOI: 10.1007/bf02670199
Google Scholar
[30]
Kumar, S., Bhaduri, S.C., Three-Dimensional Finite Element Modeling of Gas Metal-Arc Welding, Metallurgical Transactions B, 25 (1994) 935-941.
DOI: 10.1007/bf02663394
Google Scholar
[31]
M. Van Elsen, Baelmans, M., Mercelis, P., Kruth , J. -P., Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing, International Journal of Heat and Mass Transfer, 50 (2007) 4872–4882.
DOI: 10.1016/j.ijheatmasstransfer.2007.02.044
Google Scholar
[32]
Ali, Y. M, Zhang, L.C., Relativistic Heat Conduction, International Journal of Heat and Mass Transfer, 48 (2005) 2397-2406.
DOI: 10.1016/j.ijheatmasstransfer.2005.02.003
Google Scholar
[33]
Ali, Y. M, Zhang, L.C., Relativistic Heat Source, International Journal of Heat and Mass Transfer, 48 (2005) 2741-2758.
DOI: 10.1016/j.ijheatmasstransfer.2005.02.004
Google Scholar
[34]
Javadi,Y., Influence of Fixture on Welding Distortion, Proc. Int. Conf. on Advanced Topics in manufacturing Engineering and Management, University of Czestochowa, Faculty of Management, Czestochowa, 2010, 9-13.
Google Scholar