BSCCO 2212 Defective Tellurium Ions on Bi-Site

Article Preview

Abstract:

BSCCO 2212 superconducting samples, doped Tellurium, with the chemical formula Bi2-xTexSr2CaCu2O8, were prepared by the conventional solid state reaction technique. The prepared samples were studied utilizing XRD, DC-electrical conductivity and SEM. XRD spectra indicated that 2212 with tetragonal structure is the major phase, whereas Bi-2201 and CaTeO4 are minor phases. At higher Te-additions x, traces from some other semi conducting phases were detected. The critical transition temperature Tcoffset was found to decrease non-linearly with x, which attributed to the hole filling caused by the liberated electrons of Te4+ ions. For x–values in the range 0.1 ≤ x ≤ 0.4, the steepness of (ρ vs T) relationship increases abruptly around 150 K; this was attributed to change in the oxygen vacancy feature (phase-like transition). SEM photographs revealed that as Te-content increases the compactness of the surface and the connectivity of the grains decreases, while pores and voids increase as a result of decreasing the amount of Bi and presence of multiple-phases in the sample.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 319-320)

Pages:

161-166

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. V. Sastry, A. R. West: Physica C, 225 (1994) 173.

Google Scholar

[2] Y. Koike, Y. Iwabuchi, S. Hosoya, N. Kobayashi, T. Fukase: Physica C, 159 (1989) 105.

Google Scholar

[3] A. Q. Pham, M. Hervieu, A. Maignan, C. Michel, J. Provost, B. Raveau: Physica C, 194 (1992) 243.

Google Scholar

[4] U. Endo, S. Koyama, T. Kawai: Japan. J. Appl. Phys., 27 (1988) 1476.

Google Scholar

[5] W. Zhu, P. S. Nicholson: J. Mater. Res., 7 (1992) 38.

Google Scholar

[6] W. Zhu, P. S. Nicholson: Appl. Phys. Lett., 61 (1992) 717.

Google Scholar

[7] W. Ye-Ning, S. Hui-Min, S. Lin-Hai, C. Xiao-Hua, Z. Jin-Song, W. Jin: Phase Trans., 22 (1990) 9.

Google Scholar

[8] O. M. Nes, K. Fossheim, N. Motohira, K. Kitazawa, 1991 M, S HTCS III Int. Conf. (Japan, 1991).

Google Scholar

[9] A. R. Anderson, Genda Gue, K. N. R. Taylor, G. J. Russell: Supercond. Sci. Technol., 5 (1992) 258.

Google Scholar

[10] P. V. Reddy, S. Shekar: Supercond. Sci. Technol., 6 (1993) 785.

Google Scholar

[11] T. Motohashi, Y. Nakayama, T. Fujita, K. Kitazawa, J. Shimoyama, K. Kishio: Phys. Rev. B, 59 (1999) 1408.

Google Scholar

[12] J. Shimoyama, Y. Nakayama, K. Kitazawa, K. Kishio, Z. Hirio, I. Chong, M. Takano: Physica C, 281 (1997) 69.

Google Scholar

[13] W. D. Wu, A. Keren, L. P. Le, B. J. Sternlieb, G. M. Luke, Y. J. Uemura: Phys. Rev. B, 47 (1993) 8172.

Google Scholar

[14] I. Chong, Z. Hiroi, M. Izumi, J. Shimoyama, Y. Nakayama, K. Kishio, T. Terashima, Y. Bando, M. Takano: Science, 276 (1997) 770.

DOI: 10.1126/science.276.5313.770

Google Scholar

[15] A. L. Crossley, Y. H. Li, A. D. Caplin, J. L. MacManus-Driscoll: Physica C, 314 (1999) 12.

Google Scholar

[16] A. Abrikosov and L. p. Gorkov: Sov. Phys. JETP, 12 (1961) 1243.

Google Scholar