Diffusion and Redistribution of Boron in Nickel Silicides

Article Preview

Abstract:

The Diffusion and Solubility of B Implanted in δ-Ni2Si and Nisi Layers Is Studied by SIMS. it Is Observed that both Diffusion and Solubility Are Higher in δ-Ni2Si than Nisi. the Redistribution of B during Ni Silicidation Is Also Studied. the SIMS Profiles Show the Presence of Concentration Step in the Middle of the Final Nisi Layer. this Profile Shape Is Explained in Light of the Results Obtained in Preformed Silicides. the Proposed Model Is Supported by Redistribution Simulations that Can Reproduce the Main Features of the Profile.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Pages:

415-420

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Gambino and E.G. Colgan, Mat. Chem. Phys. Vol 52(2) (1998), p.99.

Google Scholar

[2] U. Gösele and K.N. Tu, J. Appl. Phys. Vol. 53(4) (1982), p.3252.

Google Scholar

[3] M. Wittmer and T.E. Seidel, J. Appl. Phys. Vol. 49(12) (1978), p.5827.

Google Scholar

[4] A. Kikuchi, and S. Sugaki, J. Appl. Phys. Vol. 53(5) (1982), p.3690.

Google Scholar

[5] S.P. Murarka and D.S. Williams, J. Vac. Sci. Tech. B. Vol. 5(6) (1987), p.1674.

Google Scholar

[6] Y. Mishin, C. Herzig, J. Bernardini and W. Gust, Int. Mat. Rev. Vol. 42(4) (1998), p.155.

Google Scholar

[7] A. Portavoce, I. Blum, D. Mangelinck, K. Hoummada, L. Chow, V. Carron and J.L. Lábár, Scripta Mat. Vol. 64(9) (2011), p.828.

DOI: 10.1016/j.scriptamat.2011.01.015

Google Scholar

[8] K. Hoummada, D. Mangelinck, C. Perrin, V. Carron and P. Holliger, J; Appl. Phys. Vol. 104(2) (2008), p.024313.

Google Scholar

[9] R.G. Wilson, F.A. Stevie and C.W. Magee, in: Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, (Wiley ed. 1989).

Google Scholar

[10] Y.M. Haddara, B.T. Folmer, M.E. Law and T. Buyuklimanli, Appl. Phys. Lett. Vol 77(13) (2000), p. (1976).

Google Scholar

[11] I. Blum, A. Portavoce, L. Chow, D. Mangelinck, K. Hoummada, G. Tellouche and V. Carron, Appl. Phys. Lett. Vol. 96(5) (2010), p.054102.

DOI: 10.1063/1.3303988

Google Scholar

[12] C. Lavoie, C. Coia, F.M. d'Heurle, C. Detavernier, C. Cabral, P. Desjardins and A.J. Kellock. Deff. Diff. Forum Vol. 237 (2005), p.825.

DOI: 10.4028/www.scientific.net/ddf.237-240.825

Google Scholar

[13] D. Mangelinck, K. Hoummada, and I. Blum, Appl. Phys. Lett. Vol. 95(18) (2009), p.181902.

Google Scholar

[14] I. Ohdomari, M. Akiyama, T. Maeda, M. Hori, C. Takebayashi, A. Ogura, T. Chikyo, I. Kimura, K. Yoneda and K.N. Tu, J. Appl. Phys. Vol. 56(10) (1984), p.2725.

DOI: 10.1063/1.333801

Google Scholar

[15] P. Pichler : Computational Microelectronics, (Springer-Verlag, Wien New-York 2004).

Google Scholar

[16] C. Zaring, H. Jiang, B.G. Svensson and M. Östling, Appl. Surf. Sci. Vol. 53 (1991), p.147.

Google Scholar

[17] O. Cojocaru-Mirédin, C. Perrin-Pellegrino, D. Mangelinck and D. Blavette, Microelec. Eng. Vol. 87(3) (2010), p.271.

DOI: 10.1016/j.mee.2009.06.018

Google Scholar