Reactive Diffusion of Thin Si Deposits into Ni (111)

Article Preview

Abstract:

Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and scanning tunnelling microscopy (STM) were used to study the reactive diffusion of one monolayer of silicon deposited at room temperature onto a Ni (111) substrate. We have done isochronal and isothermal kinetics by AES, and we observed in both cases a kinetics blockage on a plateau corresponding to around one third of a silicon monolayer. STM images and LEED patterns both recorded at room temperature just after annealing, reveal formation of an ordered hexagonal superstructure corresponding probably to a two-dimensional surface silicide.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Pages:

421-426

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Stolt and F.M. d'Heurle, Thin Solid Films, 189 (1990) 269.

Google Scholar

[2] L. J. Chen, C. S. Liu, J. B. Lai, Materials Science in Semiconductor Processing 7 (2004) 143.

Google Scholar

[3] C. S. Liu, L. J. Chen, J. Appl. Phys. 74 (1993), 5501.

Google Scholar

[4] G. Ottaviani, K. N. Tu, J. W. Mayer, Phys. Rev. B, 24 (1981), 24.

Google Scholar

[5] C. D. Lien, M.A. Nicolet, S. S. Lau, Phys. Stat. Sol., 81 (1984), 123.

Google Scholar

[6] L. A. Clevenger, C.V. Thompson, J. Appl. Phys., 67 (1990), 1325.

Google Scholar

[7] C. Lavoie, F. M. D'Heurle, C. Detavernier, C. Cabral, J. Micro. Eng., 70 (2003), 144.

Google Scholar

[8] P. Gergaud, C. Rivero, M. Gailhanou, O. Thomas, B. Froment, H. Jaouen, V. Carron, Appl. Phys. Lett., 87 (2005), 41904.

DOI: 10.1063/1.1999021

Google Scholar

[9] S. A. Parikh, M. Y. Lee, P. A. Bennett, Suf. Sci. 356 (1996), 53.

Google Scholar

[10] L. Gergoratti, G. Gunther, J. Kovac, M. Marsi, R. J. Phaneuf, M. Kiskinova, Phys. Rev. B., 59 (1999), (2018).

Google Scholar

[11] M. Yoshimura, I. Ono, K. Ueda, Appl. Surf. Sci., A130 (1998), 276.

Google Scholar

[12] Y. Khang, Y. Kuck, Phys. Rev. B, 53 (1995), 10775.

Google Scholar

[13] C. Leandri, G. Le Lay, B. Aufray, C. Girardeaux, J. Avila, M.E. Davila, M. C. Asensio, C. Ottaviani, A. Cricenti, Surf. Sci., 574-1 (2005), L9-L15.

DOI: 10.1016/j.susc.2004.10.052

Google Scholar

[14] C. Leandri, B. Aufray, G. Le Lay, C. Girardeaux, C. Ottaviani, A. Cricenti, J. Phys. IV, 132 (2006), 311.

DOI: 10.1051/jp4:2006132059

Google Scholar

[15] Z. Balogh, Z. Erdelyi, D. L. Beke, G. Langer, A. Csik, H. -G. Boyen, U. Wiedwald, P. Ziemann, A. Portavoce, C. Girardeaux, Appl. Phys. Lett. 92 (2008), 143104.

DOI: 10.1063/1.2908220

Google Scholar

[16] B. Lalmi, C. Girardeaux, A. Portavoce, J. Bernardini, B. Aufray, J. Nano. Nanotech., 9 (2009), 4311.

DOI: 10.1166/jnn.2009.m51

Google Scholar

[17] B. Lalmi, C. Girardeaux, A. Portavoce, J. Bernardini, B. Aufray, Def. Dif. Forum, 281 (2009), 601.

Google Scholar

[18] Z. Balogh, Z. Erdélyi, D.L. Beke, A. Portavoce, C. Girardeaux, J. Bernardini, A. Rolland, Appl. Surf. Sci. 255 (2009), 4844.

DOI: 10.1016/j.apsusc.2008.12.010

Google Scholar

[19] A. Portavoce, B. Lalmi, G. Tréglia, C. Girardeaux, D. Mangelinck, B. Aufray, and J. Bernardini, Appl. Phys. Lett. 95 (2009), 023111.

DOI: 10.1063/1.3177187

Google Scholar