A Novel Computational Strategy to Enhance the Ability of Elaborate Search by Entire Swarm to Find the Best Solution in Optimization of AMCs

Article Preview

Abstract:

Al 6061 alloy matrix reinforced with the coated B4C particles have been used to investigate the accuracy of a novel optimization method. Population-based optimization was inspired by the swarming behavior as is displayed by a social behavior being influenced by other individuals. The present article focuses on a method of re-evaluating a number of randomly chosen sentry particles to detect the change of environments. A comprehensive population-based optimization method was developed to optimize the mechanical and tribological properties in metal matrix composites using Multi-strategy ensemble particle swarm optimization. In this method, the particles are divided into two parts which are considered to play different roles in searching for dynamic environments by using different strategies. The global best used in part one is the best solution found by all particles, both in part one and part two.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-33

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Kaboli, X. Wenbo j. Particle swarm optimiz., 2 (2011) 125–131.

Google Scholar

[2] M. O. Shabani, A. Mazahery, Appl. Math. Model., 36 (2012) 5455–5465.

Google Scholar

[3] M. Barati, M. H. Rahul, Int. J. Expert Sys., 22 (2010) 155–163.

Google Scholar

[4] G. Alipour, P. Alotto, j. Particle swarm optimiz., 2 (2011) 152–158.

Google Scholar

[5] S.N. Omkar, K. Rahul, T.V.S. Ananth, G.N. Naik, S. Gopalakrishnan, Expert Sys. with Appl., 36 (2009) 11312–11322.

Google Scholar

[6] R.A. Krohling, E. Mendel, IEEE Congress on Evolutionary Computation, 2009, CEC'09, 2009, 3285–3291.

Google Scholar

[7] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, IEEE Transactions on Evolutionary Computation, 10 (2006) 281–295.

Google Scholar

[8] D. Beasley, D.R. Bull, R.R. Martin, Evolutionary Comput., 1(2) (1993) 101–125.

Google Scholar

[9] R. Brits, University of Pretoria, Pretoria, South Africa, November (2002).

Google Scholar

[10] A.P. Engelbrecht, B.S. Masiye, G. Pampara, in: Proceedings of the IEEE Swarm Intelligence Symposium, (2005).

DOI: 10.1109/sis.2005.1501650

Google Scholar

[11] J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance, in: Proceedings of the IEEE Congress on Evolutionary Computation, July 1999, 1931–(1938).

DOI: 10.1109/cec.1999.785509

Google Scholar

[12] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. IV, Perth, Australia, 1995, 1942–(1948).

Google Scholar

[13] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufman, (2001).

Google Scholar

[14] J. Kennedy, R. Mendes, Population structure and particle swarm performance, in: Proceedings of the IEEE World Congress on Evolutionary Computation, Honolulu, Hawaii, May 2002, 1671–1676.

Google Scholar

[15] F. van den Bergh, A.P. Engelbrecht, Information Science, 176(8) (2006) 937–971.

Google Scholar

[16] M. O. Shabani, A. Mazahery, Appl. Math. Model., 35 (2011) 5707–5713.

Google Scholar

[17] M.O. Shabani, A. Mazahery, Metall. Mater. Trans. A, 43 (2012), 2158-2165.

Google Scholar

[18] M.O. Shabani, A. Mazahery, Ceram. Int., 38 (2012) 4541–4547.

Google Scholar

[19] J. Hashim, L. Looney, M.S.J. Hashmi, Part I, J. Mater. Process. Technol., 123 (2002) 251–257.

Google Scholar

[20] A. Mazahery, M. O. Shabani, Ceram. Int., 38 (2012) 1887–1895.

Google Scholar

[21] W.R. Blumenthal, G.T. Gray, T.N. Claytor, J. Mater. Sci. 29 (1994) 4567–4576.

Google Scholar

[22] A.J. Pyzik, I.A. Aksay, M. Sarikaya, Mater. Sci. Res., 21 (1986) 45-51.

Google Scholar

[23] A.J. Pyzik, I.A. Aksay, Processing of ceramic and metal matrix composites, in: Proceedings of the International Symposium on Advances in Processing of Ceramic and Metal Matrix Composites, New York, NY, 1989, p.269.

DOI: 10.1016/b978-0-08-037298-3.50031-1

Google Scholar

[24] A.J. Pyzik, D.R. Beaman, J. Am. Ceram. Soc., 78 (1995) 305-‏ ‏312.

Google Scholar

[25] S.K. Rhee, J. Am. Ceram. Soc., 53 (1970) 386-389.

Google Scholar

[26] A. Mazahery, M. O. Shabani, Powder Technol., 217 (2012) 558–565.

Google Scholar

[27] L.V. Vugt, L. Froyen, J. Mater. Process. Technol., 104 (2000) 133–144.

Google Scholar

[28] G.A. Irons, K. Owusu-Boahen, Metall. Mater. Trans. B, 26 (1995) 980–981.

Google Scholar

[29] S. Gowri, F.H. Samuel, Metall. Trans. A, 23 (1992) 3369–3376.

Google Scholar

[30] M. Gupta, L. Lu, S.E. Ang, J. Mater. Sci., 32 (1997) 1261– 1267.

Google Scholar

[31] P.A. Karnezis, G. Durrant, B. Cantor, Mater. Charact., 40 (1998) 97–109.

Google Scholar