[1]
X.Y. Wang Yang, G.Q. Zhang, Z.S. Yan, L.M. Meng, Synthesis of Strong-Magnetic Nanosized Black Pigment ZnxFe3-xO4 Dyes and Pigments, 74 (2007) 269-72.
DOI: 10.1016/j.dyepig.2006.02.004
Google Scholar
[2]
A.C.F.M. Costa, A.M.D. Leite, H.S. Ferreira, R.H.G.A. Kiminami, S. Cava, L. Gama, Brown Pigment of the Nano Powder Spinel Ferrite Prepared by Combustion Reaction, Journal of the European Ceramic Society, 28 (2008) 2033-7.
DOI: 10.1016/j.jeurceramsoc.2007.12.039
Google Scholar
[3]
A.K.M.A. Hossain, T.S. Biswas, T. Yanagida, H. Tanaka, H. Tabata, T. Kawai, Investigation of Structural and Magnetic Properties of Polycrystalline Ni0. 50Zn0. 50-xMgxFe2O4 Materials, Chemistry and Physics, 120 (2010) 461-7.
DOI: 10.1016/j.matchemphys.2009.11.040
Google Scholar
[4]
M. Naoe, T. Omura, T. Sato, K. Yamasawa, Y. Miura, Synthesis and Characterization of Temperature Sensitive L-Zn-Cu Ferrite, Japanese Journal of Applied Physics, 47 (2008) 550-3.
DOI: 10.1143/jjap.47.550
Google Scholar
[5]
R. Lebourgeois, C. Coillot, Mn-Zn Ferrites for Magnetic Sensor in Space Applications, Journal of Applied Physics, 103 (2008) Ar. # 07E510.
DOI: 10.1063/1.2838994
Google Scholar
[6]
B. Parvatheeswara Rao, C.O. Kim, C.G. Kim, I. Dumitru, L. Spinu and O.F. Caltun, Structural and Magnetic Characterizations of Co-Precipitated Ni-Zn and Mn-Zn Ferrite Nanoparticles, IEEE Trans. Magn., 42 (2006) 2858-60.
DOI: 10.1109/tmag.2006.879901
Google Scholar
[7]
D Timothy. Dunbar, Electron Paramagnetic Resonance Investigations of Lanthanide-Doped Barium Titanate: Dopant Site Occupancy, J. Phys. Chem. B, 108 (2004) 908-17.
DOI: 10.1021/jp036542v
Google Scholar
[8]
E. Ateia Effect of Gamma Irradiation on the Structural and Electrical Properties of Co0. 5Zn0. 5 Cey Fe2-yO4, Egypt. J. Solids, 29 -2, (2006).
Google Scholar
[9]
Y. Tsur, Crystal and Defect Chemistry of Rare Earth Cations in BaTiO3, Journal of Electroceramics, 7 (2001) 25–34.
Google Scholar
[10]
M.M. Abraham, L.A. Boatner, D.N. Olson, Ho¨chli, U. T, EPR Studies of some f n and d n Electronic Impurities in KTaO3 Single Crystals, J. Chem. Phys., 81 (1984) 2528.
DOI: 10.1002/chin.198452019
Google Scholar
[11]
Bonil Koo et al, Hollow Iron Oxide Nano Particles for Application in Lithium Batteries, Nano Letters, 12.
Google Scholar
[5]
(2012) 2429-35.
Google Scholar
[12]
S.K. Pradhan et al, Microstructure Characterization and Cation Distribution of Nanocrystalline Magnesium Ferrite Prepared by Ball Milling, Materials Chemistry and Physics, 93 (2005) 224–30.
DOI: 10.1016/j.matchemphys.2005.03.017
Google Scholar
[13]
D.H. Kim, H.D. Zeng, T.C. Ng, C.S. Brazel, T-1 and T-2 Relaxivities of Succimer-Coated MFe23+O4 (M = Mn2+, Fe2+ and Co2+) Inverse Spinel Ferrites for Potential Use as Phase-Contrast Agents in Medical MRI, Journal of Magnetism and Magnetic Materials, 321 (2009).
DOI: 10.1016/j.jmmm.2009.07.057
Google Scholar
[14]
D.M. Hemeda, A. Tawfik, O.M. Hemeda, S.M. Dewidar, Effects of NiO Addition on the Structure and Electric Properties of Dy3-xNixFe5O12 Garnet Ferrite, Solid State Sciences, 11 (2009) 1350-7.
DOI: 10.1016/j.solidstatesciences.2009.04.020
Google Scholar
[15]
S.Q. Zhou, K. Potzger, Q.Y. Xu, K. Kuepper, G. Talut, D. Marko, A. Mucklich, M. Helm, Fassbender, J., Arenholz, E. H, Schmidt, Spinel Ferrite Nanocrystals Embedded Inside ZnO: Magnetic, Electronic, and Magnetotransport Properties, Physical Review B, 80 (2009).
DOI: 10.1103/physrevb.80.094409
Google Scholar
[16]
P.P. Hankare, P.D. Kamble Nimat, et al., Ferrospinels Based on Cu and Co Prepared via Low Temperature Route as Efficient Catalysts for the Selective Oxidation of Alcohol, Journal of Alloys and Compounds, 487 (2009) 730-4.
DOI: 10.1016/j.jallcom.2009.08.061
Google Scholar
[17]
A.A. Sattar, Rare Earth Doping Effect on the Electrical Properties of Cu-Zn Ferrites, J. Phys. IV France, (1997) 7.
Google Scholar
[18]
A.A. Thant, S. Srimala, P. Kaung, M. Itoh, O. Radzali1 and M.N. Ahmad Fauzi1, Low Temperature Synthesis of MgFe2O4 Soft Ferrite Nanocrystallites, Journal of the Australian Ceramic Society, 46.
Google Scholar
[1]
(2010) 11-4.
Google Scholar
[19]
Vasant Naidu et al., Magnetic properties of Nickel, Samarium doped Zinc Ferrite, International Journal of Computer Applications, 24.
Google Scholar
[2]
(2011) 18-22.
Google Scholar
[20]
Vasant Naidu, S.K.A. Ahamed Kandu Sahib, M. Suganthi, Chandra Prakash, Study of Electrical and Magnetic Properties in Nano sized Ce-Gd Doped Magnesium Ferrite, International Journal of Computer Applications, 27.
DOI: 10.5120/3293-4496
Google Scholar
[5]
(2011) 40-5.
Google Scholar
[21]
C. Kailasanathan et al., Structure and Properties of Titania Reinforced Nano-Hydroxypatite/Gelatin Bio-Composites for Bone Graft Materials, Ceramics International, 38(1) (2012) 571-9.
DOI: 10.1016/j.ceramint.2011.07.045
Google Scholar
[22]
B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. London, (1967).
Google Scholar
[23]
T.T. Srinivasan, C.M. Srivastava, N. Venkataramani, M.J. Patni, Infrared Absorption in Spinal Ferrites, Bull. Mater. Sci., 6 (1984) 1063.
DOI: 10.1007/bf02743958
Google Scholar
[24]
C.M. Srivastava, S.N. Shrinji, M.J. Patni, S.M. Joglekar, Influence of the Presence of Fe2+ Ion in Nickel Zn Ferrite, Bull. Mater. Sci., 6 (1984) 7-12.
DOI: 10.1007/bf02744161
Google Scholar
[25]
Ashok Gadkari, Influence of Rare-Earth Ions on Structural and Magnetic Properties of CdFe2O4 Ferrites, Rare Earths, 29.
DOI: 10.1007/s12598-010-0029-z
Google Scholar
[2]
(2010) 168.
Google Scholar
[26]
N. Reslescu, Effect of the Rare –Earth Ions on Some Properties of Nickel-Zinc Ferrite, J. Phys – Condens. Matter, 6 (1994) 5707.
Google Scholar
[27]
M.M. Barakat, M.A. Henaish, S.A. Olofa, A. Tawfik, J. Therm. Anal. Calor., 37 (1991) 241.
Google Scholar
[28]
J.C. Wurst, J.A. Nelson, Lineal Intercept Technique for Measuring Grain Size in Two-Phase Polycrystalline Ceramics, J. Am. Ceram. Soc., 55(2) (1972) 109.
DOI: 10.1111/j.1151-2916.1972.tb11224.x
Google Scholar
[29]
Vasant Naidu et al., Magnetic Property Study of Nickel Cerium Substituted Zinc Ferrite Nano Particles, International Journal of Computer Applications, 40.
DOI: 10.5120/5030-7180
Google Scholar
[4]
(2012) 7-12.
Google Scholar
[30]
S. Vijaragavan, Vassant Naidu, R. Legadevi, Synthesis of Nano Sized Sm-Gd Doped Magnesium Ferrite and Their Permittivity and Hysteresis Studies, International Journal of Computer Applications, 30.
Google Scholar
[7]
(2011) 13-23.
Google Scholar
[31]
P.K. Roy, J. Bera, Enhancement of the Magnetic Properties of Ni–Cu–Zn Ferrites with the Substitution of a Small Fraction of Lanthanum for Iron, Materials Research Bulletin (2006).
DOI: 10.1016/j.materresbull.2006.05.009
Google Scholar
[32]
Sebastian, Dielectric Materials for Wireless Communication, Elsevier Ltd, ISBN 13, (2008).
Google Scholar
[33]
R.G. Kulkarni, H. Joshi, Comparison of Magnetic Properties of MgFe2O4 Prepared by Wet-Chemical and Ceramic Methods, Journal Solid State Chem, 64 (1986) 141.
DOI: 10.1016/0022-4596(86)90133-7
Google Scholar
[34]
A.A. Sattar, H.M. El-Sayed et al., Effect of Manganese Substitution on the Magnetic Properties of Nickel-Zinc Ferrite, Journal of Materials Engineering and Performance, 14.
DOI: 10.1361/10599490522185
Google Scholar
[1]
(2005) 99-103.
Google Scholar
[35]
M. Penchal Reddy, Structural , Magnetic and Electrical Properties of NiCuZn Ferrites Prepared by Microwave Sintering Method Suitable for MLCI Application, Journal of Physics and Chemistry of Solids, 71 (2010) 1373-80.
DOI: 10.1016/j.jpcs.2010.06.007
Google Scholar
[36]
S.S. Jadhav, S.M. Patange, K.M. Jadhav, Dielectric Behaviour Study of Nanocrystalline Co-Zn Ferrite, Journal of Biomedical and Bioengineering, 1.
Google Scholar
[1]
(2010) 21-9.
Google Scholar
[37]
J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library, Eindhoven, Netherlands, (1959).
Google Scholar
[38]
V.R.K. Murthy, J. Sobhanadri, Electrical Conductivity of Some Nickel-Zinc Ferrites, Phys. Status Solidi A, 38 (1976) 647.
DOI: 10.1002/pssa.2210380227
Google Scholar
[39]
A. Kaya, H.Y. Fang, Identification of Contaminated Soils by Dielectric Constant and Electrical Conductivity, J. Envir. Eng. ASCE, 123(2) (1997) 169-77.
DOI: 10.1061/(asce)0733-9372(1997)123:2(169)
Google Scholar
[40]
T. Saarenketo, Electrical Properties of Water in Clay and Silty Soils, J. Applied Geophysics, 40 (1998) 73-88.
DOI: 10.1016/s0926-9851(98)00017-2
Google Scholar
[41]
C.G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies, Phys. Rev., 83 (1951) 1520.
Google Scholar
[42]
Mahindrakar Rohini et al., Electrical and Dielectric Properties of Zirconium doped Nickel-Zinc Ferrite, Journal of Physics, 1.
Google Scholar
[1]
(2010) 14-9.
Google Scholar
[43]
Vasant Naidu et al., Mg Sm Ferrite for Nano Structured E-Shaped Patch Antenna Studies International Journal of Computer Applications, 30.
DOI: 10.5120/3634-5074
Google Scholar
[5]
(2011) 45-50.
Google Scholar
[44]
S.K.A. Ahmad Kandu Sahib et al., Sm- Gd Doped Magnesium Ferrite for E-Shaped Microstrip Patch Antenna, International Journal of Computer Applications, 35.
Google Scholar
[45]
P. Deepa, R. Abdul Sikkandar, Helina Rajini Suresh, Designing a Dual ISM Band Implantable Antenna for Medical Monitoring Applications using Dy-Sm Doped Magnesium Nano Ferrite Material, International Journal of Computer Applications, 44.
DOI: 10.5120/6312-8648
Google Scholar
[12]
(2012) 1-4.
Google Scholar
[46]
W.E. Spicer, A.H. Sommer, J.G. White, Studies of the Semiconducting Properties of the Compound CsAu, Phys. Rev., 115 (1959) 57–62.
DOI: 10.1103/physrev.115.57
Google Scholar
[47]
Ahmed H. Reja Study of Micro Strip Feed Line Patch Antenna, Antennas and Propagation International Symposium, 27 (2008) 340-2.
Google Scholar
[48]
Neenansha Jain, Anubhuti Khare, Rajesh Nema, E-Shape Micro Strip Patch Antenna on Different Thickness for Pervasive Wireless Communication, (IJACSA) International Journal of Advanced Computer Science and Applications, 2.
DOI: 10.14569/ijacsa.2011.020418
Google Scholar