Effect of Mechanical Activation on the Electrochemical Behavior of MnO2

Article Preview

Abstract:

Electrochemical behaviour of mechanoactivated β-MnO2 powders has been studied by the method of cyclic voltammetry with a carbon-paste electroactive electrode. Mechanical activation was carried out by dry grinding in an AGO-2 planetary ball mill. It was found that the grinding process results in a mechanochemical effect in the surface layer of the oxide particles: Mn (IV) cations are reduced to Mn (III). Voltammetry test detects that mechanical activation of β-MnO2 leads to a new state, which is characteristic for the γ-modification of manganese dioxide (β-MnO2 γ-MnO2).

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 334-335)

Pages:

369-374

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Wang, Z. Lu, D. Qian, Y. Li, W. Zhang: Nanotechnology Vol. 18 (2007), p.115616

Google Scholar

[2] Y. Tanaka, M. Tsuji, Y. Tamaura: Phys. Chem. Chem. Phys. Vol. 2 (2000), p.1473

Google Scholar

[3] S. Jouanneau, A. Le Gal La Salle, D. Guyomard: Electrochim. Acta Vol. 48 (2002) p.11

Google Scholar

[4] D. Rahner, S. Machill, H. Schlorb, K. Sinry, M. Kloss, W. Plieth: J. Solid State Electrochem. Vol. 2 (1998), p.78

Google Scholar

[5] Bo Jin, Hal-Bon Gu,Ki-Won Kim: J. Solid State Electrochem. Vol. 12 (2008), p.105

Google Scholar

[6] Q.S. Song, C.H. Chiu, S.L.J. Chan: J. Solid State Electrochem. Vol. 12 (2008), p.133

Google Scholar

[7] V.V. Zyryanov: Uspekhi khimii V.77, № 2 (2008), p.107

Google Scholar

[8] V.V. Molchanov, R.A. Buyanov: Uspekhi khimii V. 69, № 5 (2000), p.476

Google Scholar

[9] V.V. Boldyrev: Uspekhi khimii V.75, № 3 (2006), p.203

Google Scholar

[10] V.B. Fetisov, G.A. Kozhina, A.N. Ermakov, A.V. Fetisov, E.G. Miroshnikova: J. Solid State Electrochem. V.11, N 9 (2007), p.1205

DOI: 10.1007/s10008-007-0269-5

Google Scholar

[11] A. Kazawa, R.A. Powers: J. Electrochem. Soc. Vol. 113, N9 (1966), p.870

Google Scholar

[12] D.A.J. Swinkels, K.E. Anthony, P.M. Fredericks, P.R. Osborn: J. Electroanal. Chem. Vol. 168 (1984), p.433

Google Scholar

[13] H. Ouboumour, C. Cachet, M. Bode, L. T. Yu: J. Electrochem. Soc. Vol. 142, N4 (1995), p.1061

Google Scholar

[14] D.A. Fielder: J. Solid State Electrochem. Vol. 2 (1998), p.315

Google Scholar

[15] H. Kahil: J. Solid State Electrochem. Vol. 4 (2000), p.183

Google Scholar

[16] M. Ghaemi, A. Gholami, R.B. Moghaddam: Electrochimica Acta Vol. 53 (2008), p.3250

Google Scholar

[17] H. Malankar, S.S. Umare, K. Singh, M. Sharma: J. Solid State Electrochem. Vol. 14 (2010), p.71

Google Scholar

[18] H. Bode, A. Schimer, D. Berndt: Z. Electrochem. Vol. 66 (1962), p.586

Google Scholar

[19] D.K. Walanda, G.A. Lawrance, S.W. Donne: J. Power Sources Vol. 139 (2005), p.325

Google Scholar

[20] G.S. Bell, R. Huber: J. Electrochem. Soc. Vol. 111 (1964), p.1

Google Scholar

[21] V.V. Ashpur, Kh.Z. Brainina: Elektrokhimiya V. 16, № 7 (1980), p.1031

Google Scholar

[22] J.A. Lee, W.C. Maskell, F.L. Tye: J. Electroanal. Chem. Vol.79 (1977), p.79

Google Scholar

[23] S. Bakardjieva, P. Bezdicka, T. Grigar, P. Vorm: J. Solid State Electrochem. Vol. 4 (2000), p.306

Google Scholar

[24] Z. Rogulski, M.Chotkowski, A.Czerwinski: J. New Mat. Electrochem. Systems Vol. 9 (2006), p.401

Google Scholar

[25] J. McBreen: Electrochimica Acta Vol.20 (1975), p.221

Google Scholar

[26] K. Kordesch, J.Gsellmann, M. Peri, K. Tomantschger, R. Chemelli: Electrochimica Acta Vol. 26, N10 (1981), c. 1495

DOI: 10.1016/0013-4686(81)90021-9

Google Scholar

[27] Y. Chabre, J. Pannetier: Prog. Solid State Chem. Vol. 23 (1995) p.1

Google Scholar

[28] Y. Huang, R. Jiang, S.-J. Bao, Z. Dong, Y. Cao, D. Jia, Z. Guo: J. Solid State Electrochem. Vol. 13 (2009), p.799

Google Scholar

[29] K.S. Abou-El-Sherbini, M.H. Askar, R. Schollhorn: Solid State Ionics Vol. 150 (2002), p.417

Google Scholar