Optical Chemical Nanosensors in Clinical Applications

Article Preview

Abstract:

Because of their size and versatile chemistry, nanomaterials represent today powerful tools for (bio) sensing applications. Various types of nanomaterials have proven to be practical, not only for the determination of clinically relevant parameters, but also for diagnostics, drug delivery and treatment of diseases (e.g. cancer). In this short review, types of nanomaterials used in medical applications are briefly described along with some of their applications where the nanomaterials optical properties can be exploited. The question of the toxicity of nanomaterials and the issue of future trends are also raised.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 334-335)

Pages:

387-396

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Vo-Dinh, Optical Nanosensors for Detecting Proteins and Biomarkers in Individual Living Cells: in Protein Nanotechnology, Vol. 300, p.383, ed.: T. Vo-Dinh, Humana Press Inc., Totowa, NJ (2005).

DOI: 10.1385/1-59259-858-7:383

Google Scholar

[2] A.P. Demchenko, Sensing Inside Living Cells and Tissues, chapter 11 in: Introduction to Fluorescence Sensing (Springer, 1st ed. 2009), p.455.

Google Scholar

[3] T. Vo-Dinh and Y. Zhang: WIREs Nanomedicine and Nanobiotechnology, 3-1 (2010) 79.

Google Scholar

[4] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori: J. Control. Release 65 (2000) 271.

Google Scholar

[5] J.R. McCarthy, R. Weissleder: Advanced Drug Delivery Reviews 60 (2008) 1241.

Google Scholar

[6] J.B. Haun, N.K. Devaraj, S.A. Hilderbrand, H. Lee, R. Weissleder: Nat. Nanotechnol. 5 (2010) 660.

Google Scholar

[7] C. Tassa; J.L. Duffner, T.A. Lewis: Bioconjugate Chem., 21 (2009) 14.

Google Scholar

[8] S. Hong, P. Leroueil, I. Majoros, B. Orr, J. Baker, M. Holl: Chem. Biol. 14 (2007) 107–1.

Google Scholar

[9] S.Y. Shaw, E.C. Westly, M.J. Pittet, A. Subramanian, S.L. Schreiber, R. Weissleder: Proc. Natl Acad Sci USA 105 (2008) 7387.

DOI: 10.1073/pnas.0802878105

Google Scholar

[10] J.H. Lee, Y.W. Jun, S.I. Yeon, J.S. Shin, J. Cheon: Angew Chem Int Ed 45 (2006) 8160.

Google Scholar

[11] T. Atanasijevic, M. Shusteff, P. Fam, A. Jasanoff: Proc Natl Acad Sci USA 103 (2006) 14707.

DOI: 10.1073/pnas.0606749103

Google Scholar

[12] J.F. Lutz, S. Stiller, A. Hoth, L. Kaufner, U. Pison, R. Cartier: Biomacromolecules 7 (2006) 3132.

DOI: 10.1021/bm0607527

Google Scholar

[13] M. Ferrari: Nat Rev Cancer 5 (2005) 161.

Google Scholar

[14] A.K. Iyer, G. Khaled, J. Fang, H. Maeda: Drug Discov Today 11 (2006) 812.

Google Scholar

[15] P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello: Adv Drug Deliv Rev 60 (2008) 1307.

Google Scholar

[16] P. Broz (ed. ): Polymer-based Nanostructures, Medical Application (RSC, 2010).

Google Scholar

[17] Y.E. Koo Lee, E.E. Ulbrich, G. Kim, H. Hah, C. Strollo, W. Fan, R. Gurjar, S.M. Koo and R. Kopelman: Anal Chem 82 (2010) 8446.

DOI: 10.1021/ac1015358

Google Scholar

[18] X. He, J. Gao, S. S. Gambhir Z. Cheng: Trends Mol Med 16-12 (2010) 574.

Google Scholar

[19] J. Napp, T. Behnke, L. Fischer, C. Würth, M. Wottawa, D.M. Katschinski, F. Alves, U. Resch-Genger, M. Schäferling: Anal Chem 83 (2011) 9039.

DOI: 10.1021/ac201870b

Google Scholar

[20] S.E.D. Webb, S.R. Needham, S.K. Roberts, M.L. Martin-Fernandez: Opt Lett 31 (2006) 2157.

Google Scholar

[21] D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, M.D. Porter: Anal Chem 75 (2003) 5936.

Google Scholar

[22] J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp: Nanomedicine: Nanotechnology, Biology, and Medicine 6 (2010) 214.

DOI: 10.1016/j.nano.2009.07.009

Google Scholar

[23] A.J. Haes, R.P. Van Duyne: Proceedings of the SPIE, Vol. 5221 Plasmonics: Metallic Nanostructures and Their Optical Properties (2003) 47.

Google Scholar

[24] Q. Xiao, L. Zhang, C. Lu: Sensor Actuat B-Chem 166-167 (2012) 650.

Google Scholar

[25] T.Y. Ohulchanskyy, I. Roy, K. -T. Yong, H.E. Pudavar, P.N. Prasad: WIREs: Nanomedicine and Nanobiotechnology 2-2 (2010) 162.

Google Scholar

[26] P.V. Baptista, M. Koziol-Montewka, J. Paluch-Oles, G. Doria, R. Franco: Clin Chem 52 (2006) 1433.

DOI: 10.1373/clinchem.2005.065391

Google Scholar

[27] X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed: Nanomedicine 2(5) (2007) 681.

Google Scholar

[28] C.C. Huang, C.K. Chiang, Z.H. Lin, K.H. Lee, H.T. Chang: Anal Chem 80-5 (2008) 1497.

Google Scholar

[29] T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, Y. Niidome: Small 4 (2008) 1001.

DOI: 10.1002/smll.200700438

Google Scholar

[30] X. Huang, M.A. El-Sayed: Journal of Advanced Research 1 (2010) 13.

Google Scholar

[31] L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West: Proc Natl Acad Sci USA 100-23 (2003) 13549.

DOI: 10.1073/pnas.2232479100

Google Scholar

[32] M.E. Wieder, D.C. Hone, M.J. Cook, M.M. Handsley, J. Gavrilovic, D.A. Russell: Photochem Photobiol Sci 5 (2006) 727.

DOI: 10.1039/b602830f

Google Scholar

[33] A. Ambrosi, F. Airò, A. Merkoçi: Anal Chem 82 (2010) 1151.

Google Scholar

[34] S. Kim, R.N. Zare: Methods Enzymol 472 (2010) 119.

Google Scholar

[35] X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed: J Am Chem Soc 128-6 (2006) 2115.

Google Scholar

[36] K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum.: Cancer Res 63-9 (2003) (1999).

Google Scholar

[37] K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, R. Richards-Kortum: Technol Cancer Res Treat 2-6 (2003) 491.

DOI: 10.1177/153303460300200602

Google Scholar

[38] C. Loo, A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas, J. West, R. Drezek: Technol Cancer Res Treat 3-1 (2004) 33.

DOI: 10.1177/153303460400300104

Google Scholar

[39] I.H. El-Sayed, X. Huang, M.A. El-Sayed: Nano Lett 5-5 (2005) 829.

Google Scholar

[40] Y. Xia, N.J. Halas: MRS Bull 30-5 (2005) 338.

Google Scholar

[41] Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang: J Phys Chem B 101-34 (1997) 6661.

Google Scholar

[42] B. Nikoobakht, M.A. El-Sayed: Chem Mater 15-10 (2003) (1957).

Google Scholar

[43] C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li: J Phys Chem B 109-29 (2005) 13857.

DOI: 10.1021/jp0516846

Google Scholar

[44] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas: Chem Phys Lett 288-2–4 (1998) 243.

Google Scholar

[45] Y. Sun, B.T. Mayers, Y. Xia: Nano Lett 2-5 (2002) 481.

Google Scholar

[46] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.Y. Li, H. Zhang, Y. Xia, X. Li: Nano Lett 7-5 (2007) 1318.

DOI: 10.1021/nl070345g

Google Scholar

[47] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt: Small 1 (2005) 325.

Google Scholar

[48] S. Ray, P.J. Reddy, S. Choudhary, D. Raghu, S. Srivastava: J Proteomics 74 (2011) 2660.

Google Scholar

[49] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann: Nat Methods 5 (2008) 763.

DOI: 10.1038/nmeth.1248

Google Scholar

[50] K.J. Kewal: Clin Chim Acta 358 (2005) 37.

Google Scholar

[51] H.M. Azzazy, M.M. Mansour, S.C. Kazmierczak: Clin Biochem 40 (2007) 917.

Google Scholar

[52] Z. Deng, Y. Zhang, J. Yue, F. Tang and Q. Wei: J Phys Chem B 111 (2007) 12024.

Google Scholar

[53] K. Joo, A. Tai and P. Wang in: Imaging and tracking of viruses using quantum dots, edited by C.S.S.R. Kumar, Nanomaterials for the Life Sciences Vol. 6: Semiconductor Nanomaterials, chapter 6, Wiley-VCH Verlag GmbH & Co. KGaA, (2010).

Google Scholar

[54] X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, M.P. Bruchez: Nat Biotechnol 21 (2003) 41.

DOI: 10.1038/nbt764

Google Scholar

[55] A.M. Smith, S. Dave, S. Nie, L. True, X. Gao: Expert Rev Mol Diagn 6-2 (2006) 231–44.

Google Scholar

[56] N. Bartneva and I. Vorobjev, in: Quantum Dots in microscopy and cytometry, ed. by A. Méndez-Villas and J. Díaz, Microscopy: Science, Technology, Applications and Educations, Fromatex (2010).

Google Scholar

[57] A.J. Tavares, L. Chong, E. Petryayeva, W.R. Algar, U.J. Krull: Anal Bioanal Chem 399 (2011) 2331.

Google Scholar

[58] Y. Xing, J. Rao: Cancer Biomark 4 (2008) 307.

Google Scholar

[59] K.J. Cash, H.A. Clark: Trends Mol Med 16-12 (2010) 584.

Google Scholar

[60] P. Wu, Y. He, H.F. Wang, X.P. Yan: Anal Chem 82 (2010) 1427.

Google Scholar

[61] C.P. Soman, T.D. Giorgio: Langmuir 24 (2008) 4399.

Google Scholar

[62] M.A. Hahn, P.C. Keng, T.D. Krauss: Anal Chem 80 (2008) 864.

Google Scholar

[63] H. Mukundan, H. Xe, D. Price, J.Z. Kubicek-Sutherland, W.K. Grace, A.S. Anderson, J.S. Martinez, N. Hartman, B.I. Swanson: Anal Chem 82 (2010) 136.

DOI: 10.1021/ac901497g

Google Scholar

[64] J. Dobson: Drug Dev Res 67 (2006) 55.

Google Scholar

[65] I.I. Slowing, B.G. Trewyn, S. Giri and V.S. -Y. Lin: Adv Funct Mater 17 (2007) 1225.

Google Scholar

[66] R. Hergt, S. Dutz, R. Müller, M. Zeisberger: J Phys-Condens Mat 18 (2006) S2919.

Google Scholar

[67] P. Gould: Nano Today 1-4 (2006) 34.

Google Scholar

[68] J. Grimm, J.M. Perez, L. Josephson, R. Weissleder: Cancer Res 64 (2004) 639.

Google Scholar

[69] E.Q. Song, J. Hu, C.Y. Wen, Z.Q. Tian, X. Yu, Z.L. Zhang, Y.B. Shi, D. -W, Pang: ACSNano, 5-2 (2011) 761.

Google Scholar

[70] B. Zhang, B. Chen, Y. Wang, F. Guo, Z. Li, D. Shi: J Colloid Interf Sci 353 (2011) 426.

Google Scholar

[71] Y. Ge,Y. Zhang, S. He, F. Nie, G. Teng, N. Gu: Nanoscale Res Lett 4-4 (2009) 287–95.

Google Scholar

[72] R. Wilson, D.G. Spiller, I.A. Prior, K.J. Veltkamp, A. Hutchinson: ACSNano 1-5 (2007) 487.

Google Scholar

[73] A. Lapresta Fernandez, T. Doussineau, A.J. Moro, S. Dutz, F. Steiniger, G.J. Mohr: Anal Chim Acta 707 (2011) 164.

DOI: 10.1016/j.aca.2011.09.008

Google Scholar

[74] Y. Zhang, S.W.Y. Gong, L. Jin, S.M. Li, Z.P. Chen, M. Ma, N. Gu: Chin Chem Lett 20 (2009) 969.

Google Scholar

[75] V. Malinova And W. Meier: Polymer Materials for Biomedical Applications, edited by Brož, Polymer-based nanostructures, Medical Applications, chapter 1, RSC publishing (2010).

DOI: 10.1039/9781847559968-00003

Google Scholar

[76] N. Sato, T. Okada, H. Horiuchi, N. Murakami, J. Takakashi, M. Nawata, H. Ota, K. Nozaki, K. Takaoka: Nat Biotechnol 19 (2001) 332.

DOI: 10.1038/86715

Google Scholar

[77] U. Izhar, H. Schwalb, J.B. Borman, G.R. Hellener, A. Hotoveli-Salomon, G. Marom, T. Stern, D. Cohn: J Surg Res 95 (2001) 152.

DOI: 10.1006/jsre.2000.6042

Google Scholar

[78] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff: Chem Rev 99 (1999) 3181.

Google Scholar

[79] M.N.V. Ravikumar, N. Kumar: Drug Dev Ind Pharm 27 (2001) 1.

Google Scholar

[80] K.H. Lam, A.J. Nijenhuis, H. Bartels, A.R. Postema, M.F. Jonkman, A.J. Pennings, P. Nieuwenhuis: J Appl Biomater 6 (1995) 191.

DOI: 10.1002/jab.770060308

Google Scholar

[81] J.W. Leenslag, A.J. Pennings, R.R. Bos, F.R. Rozema, G. Boering: Biomaterials 8 (1987) 70.

Google Scholar

[82] C.H. Jurgens, H.R. Kricheldorf, I. Kreiser-Saunders, Development of a biodegradable wound covering and first clinical results in G.H.I.M. Walenkamp Biomaterials in Surgery, ed.; G. Thieme-Verlag: New York (1998) p.112–20.

Google Scholar

[83] F. Shi, R.A. Gross, D.R. Rutherford: Macromolecules 29 (1996) 10.

Google Scholar

[84] F. Shi, R. Ashby, R.A. Gross: Macromolecules 29 (1996) 7753.

Google Scholar

[85] S. Takada, Y. Uda, H. Toguchi, Y. Ogawa: J Pharm Sci Technol 49 (1995) 180.

Google Scholar

[86] C. Damgé, C. Michel, M. Aprahamian, P. Couvreur, J.P. Devissaguet: J Control Release, 13 (1990) 233.

DOI: 10.1016/0168-3659(90)90013-j

Google Scholar

[87] W. Tan, K. Wang, X. He, X.J. Zhao, T. Drake, L. Wang, R.P. Bagwe: Med Res Rev 24 (2004) 621.

Google Scholar

[88] H.K. Kim, S. -J. Kang, S. -K. Choi, Y. -H. Min, C. -S. Yoon: Chem Mater 11 (1999) 779.

Google Scholar

[89] W. Liana, S.A. Litherlandb, H. Badranea, W. Tanc, D. Wud, H.V. Bakera, P.A. Guliga, D.V. Lime, S. Jin: Anal Biochem 334 (2004) 135.

Google Scholar

[90] J. E. Smith, L. Wang, W. Tan: Trends Anal Chem 25 (2006) 848.

Google Scholar

[91] L. Wang, C. Yang, W. Tan: Nano Lett 5 (2005) 37.

Google Scholar

[92] T. Deng, J.S. Li, J.H. Jiang, G.L. Shen, R.Q. Yu: Adv Funct Mater 16 (2006) 2147.

Google Scholar

[93] M. Tan, G. Wang, X. Hai, Z. Ye, J, Yuan: J Mater Chem 14 (2004) 2896.

Google Scholar

[94] X. He, J. Duan, K. Wang, W. Tan, X. Lin, C. He: J Nanosci Nanotechnol 4 (2004) 585.

Google Scholar

[95] R. P. Bagwe, C. Yang, L.R. Hilliard, W. Tan: Langmuir 20 (2004) 8336.

Google Scholar

[96] G. Yao, L. Wang, Y. Wu, J. Smith, J. Xu, W. Zhao, E. Lee, W. Tan: Anal Bioanal Chem 385 (2006) 518.

Google Scholar

[97] R. P. Bagwe, L.R. Hilliard, W. Tan: Langmuir 22 (2006) 4357.

Google Scholar

[98] X. Zhao, R.P. Bagwe, W. Tan: Adv Mater 16 (2004) 173.

Google Scholar

[99] L. Wang, K. Wang, S. Santra, X. Zhao, L.R. Hilliard: Anal Chem 78 (2006) 646A.

Google Scholar

[100] F. Wang, D.K. Chatterjee, Z. Li, Y. Zhang, X. Fan, M. Wang: Nanotechnology 17 (2006) 5786.

Google Scholar

[101] J. Shen, L. Zhao, G. Han: Adv Drug Deliver Rev (2012) doi: 10. 1016/j. addr. 2012. 05. 007.

Google Scholar

[102] Z. Ma, D. Dosev, M. Nichkova, R.K. Dumas, S.J. Gee, B.D. Hammock, K. Liu, I.M. Kennedy: Anal Chem 77 (2005) 6864.

Google Scholar

[103] R.S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, R. Vallejo: Anal Biochem 293 (2001) 22.

DOI: 10.1006/abio.2001.5105

Google Scholar

[104] V. Väisänen, H. Härmä, H. Lilja, A. Bjartell: Luminescence 15 (2000) 389.

Google Scholar

[105] H. Hu, L.Q. Xiong, J. Zhou, F.Y. Li , T.Y. Cao, C.H. Huang: Chem Eur J 15 (2009) 3577.

Google Scholar

[106] S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, Niu N, J. Lin: Adv Funct Mater 20 (2010) 1166.

Google Scholar

[107] E. Beaurepaire, V. Buissette, M. -P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J. -L. Martin, T. Gacoin, J. -P. Boilot, A. Alexandrou: Nano Lett 4 (2004) (2079).

DOI: 10.1021/nl049105g

Google Scholar

[108] Y. Chen, Y.M. Chi, H.M. Wen, Z.H. Lu: Anal. Chem. 79 (2007) 960.

Google Scholar

[109] F. Gao, F. Luo, X. Chen, W. Yao, J. Yin, Z. Yao, L. Wang: Talanta 80 (2009) 202.

Google Scholar

[110] E. Monson, M. Brasuel, M.A. Philbert, R. Kopelman: PEBBLE Nanosensors for in Vitro Bioanalysis: in Biomedical Photonics Handbook, ed.: T. Vo-Dinh, CRC Press, Florida (2003).

DOI: 10.1201/9780203008997.ch59

Google Scholar

[111] J. Sumner, J. Aylott, E. Monson, R. Kopelman: Analyst 127 (2002) 11.

Google Scholar

[112] M. Brasuel, R. Kopelman, T.J. Miller, R. Tjalkens, M.A. Philbert: Anal Chem 73 (2001) 2221.

Google Scholar

[113] Y. -E. L. Koo, Y. Cao, R. Kopelman: Anal Chem 76 (2004) 2498.

Google Scholar

[114] S.M. Buck, H. Xu, M. Brasuel, M.A. Philbert, R. Kopelman: Talanta 63 (2004) 41.

Google Scholar

[115] E.J. Park, M. Brasuel, C. Behrend, M.A. Philbert, R. Kopelman: Anal Chem 75 (2003) 3784.

Google Scholar

[116] H.A. Clark, M. Hoyer, S. Parus, M.A. Philbert, M. Kopelman: Microchim Acta 131 (1999) 121.

Google Scholar

[117] H.A. Clark, S.L.R. Barker, M. Brasuel, M.T. Miller, E. Monson, S. Parus, Z.Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle, M.A. Philbert: Sens Actuators B-Chem. 51 (1998) 12.

DOI: 10.1016/s0925-4005(98)00212-3

Google Scholar

[118] H.A. Clark, R. Kopelman, R. Tjalkens, M.A. Philbert: Anal Chem 71 (1999) 4837.

Google Scholar

[119] M. Brasuel, R. Kopelman, I. Kasman, T.J. Miller, M.A. Philbert: Proc. IEEE 1 (2002) 288.

Google Scholar

[120] M.G. Brasuel, T.J. Miller, R. Kopelman, M.A. Philbert: Analyst 128 (2003) 1262.

Google Scholar

[121] H. Xu, J.W. Aylott, R. Kopelman, T.J. Miller, M.A. Philbert: Anal Chem 73 (2001) 4124.

Google Scholar

[122] C.M. Janczak in Hybrid nanoparticles for enhanced sensitivity in biological labeling and biomolecular sensing, Dissertation, University of Arizona, (2011).

Google Scholar

[123] P. Tallury, A. Malhorta, L.M. Byrne, S. Santra: Adv Drug Deliver Rev 62 (2010) 424.

Google Scholar

[124] L. Wang, W.J. Zhao, M.B. O'Donoghue, W.H. Tan: Bioconjug Chem 18 (2007) 297.

Google Scholar

[125] K.J. Kewal: Clin Chem 53-11 (2007) (2002).

Google Scholar

[126] J. Xie, S. Lee, X. Chen: Adv Drug Deliver Rev 62 (2010) 1064.

Google Scholar

[127] T.F. Massoud, S.S. Gambhir: Genes Dev 17 (2003) 545.

Google Scholar

[128] P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid and T. Hasan: Adv Drug Deliver Rev 62 (2010) 1094.

DOI: 10.1016/j.addr.2010.09.002

Google Scholar

[129] L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad: J Clin Pharm Ther 83-5 (2008) 761.

Google Scholar

[130] D. Bechet, P. Couleaud, C. Frochot, M. -L. Virio, F. Guillemin, M. Barberi-Heyob: Trends Biotechnol 26-11 (2008) 612.

DOI: 10.1016/j.tibtech.2008.07.007

Google Scholar

[131] J. Ji, N. Rosenzweig, C. Griffin, Z. Rosenzweig: Anal Chem 72 (2000) 3497.

Google Scholar

[132] H. Clark, M. Hoyer, M. Philbert, R. Kopelman: Anal Chem 71 (1999), 4831.

Google Scholar

[133] A. Lapresta-Fernandez, P.J. Cywinski, A.J. Moro, G.J. Mohr: Anal Bioanal Chem 395 (2009) 1821.

Google Scholar

[134] R.L. Phillips, O.R. Miranda, C.C. You, V.M. Rotello, U.H. Bunz: Angew Chem Int. Ed Engl 47 (2008) 2590.

Google Scholar

[135] D. Qin, X. He, K. Wang, X.J. Zhao, W. Tan, J. Chen: J Biomed Biotechnol (2007) 1.

Google Scholar

[136] A.B. Descalzo, M.D. Marcos, R. Martinez-Manez, J. Soto, D. Beltran, P. Amoros: J Mater Chem 15 (2005) 2721.

Google Scholar

[137] V.S.Y. Lin, C. -Y. Lai, J. Huang, S. -A. Song, S. Xu: J Am Chem Soc 123 (2001) 11510.

Google Scholar

[138] R. Weissleder: Science 312 (2006) 1168.

Google Scholar

[139] J.V. Frangioni: Curr Opin Chem Biol 7 (2003) 626.

Google Scholar

[140] Y. Koyama, Talanov V.S., M. Bernardo, Y. Hama, C.A. Regino, M.W. Brechbiel, P.L. Choyke, H. Kobayashi: J Magn Reson Imaging 25-4 (2007), 866.

DOI: 10.1002/jmri.20852

Google Scholar

[141] L. Brannon-Peppas, J.O. Blanchette: Adv Drug Deliv Rev 56 (2004) 1649.

Google Scholar

[142] E.S. Kawasaki, A. Player: Nanomedicine 1 (2005) 101.

Google Scholar

[143] J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S. -Y. Lin: Small 6-18 (2010) (1952).

Google Scholar

[144] D.A. Groneberg, M. Giersig, T. Welte, U. Pison: Curr Drug Targets, 7-6 (2006) 643.

Google Scholar

[145] C. -Y. Lai , B. G. Trewyn , D. M. Jeftinija , K. Jeftinija , S. Xu , S. Jeftinija , V. S. Y. Lin , J. Am. Chem. Soc. 125 (2003) 44514459.

DOI: 10.1021/ja028650l

Google Scholar

[146] J.L. Vivero-Escoto, I.I. Slowing, C.W. Wu, V.S.Y. Lin: J Am Chem Soc 131 (2009) 3462.

Google Scholar

[147] J.E. Lee, N. Lee, H. Kim, J. Kim, S.H. Choi, J.H. Kim, T. Kim, I.C. Song, S.P. Park, W.K. Moon, T. Hyeon: J Am Chem Soc 132 (2010) 552.

Google Scholar

[148] D.R. Radu, C. -Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija, V.S.Y. Lin: J Am Chem Soc 126 (2004) 13216.

DOI: 10.1021/ja046275m

Google Scholar

[149] Y. Zhao, B.G. Trewyn, I.I. Slowing, V.S.Y. Lin: J Am Chem Soc. 131 (2009) 8398.

Google Scholar

[150] D.R. Radu, C.Y. Lai, J.W. Wiench, M. Pruski, V.S.Y. Lin: J Am Chem Soc 126 (2004) 1640.

Google Scholar

[151] Z.H. Xu, C.X. Li, P.G. Ma, Z.Y. Hou, D.M. Yang, X.J. Kang: Nanoscale 3 (2011) 661.

Google Scholar

[152] Z. Xu, P.G. Ma, C.X. Li, Z.Y. Hou, X.F. Zhai, S.S. Huang, J. Lin: Biomaterials 32 (2011) 4161.

Google Scholar

[153] S. Gai, P. Yang , C. Li, W. Wang, Y. Dai, N. Niu, J. Lin: Adv Funct Mater 20 (2010) 1166.

Google Scholar

[154] S.R. Sershen, S.L. Westcott, N.J. Halas, J.L. West: J Biomed Mater Res 51 (2000) 293.

Google Scholar

[155] J.P. Celli, B.Q. Spring, I. Rizvi, C.L. Evans, K.S. Samkoe, S. Verma, B.W. Pogue, T. Hasan: Chem. Rev. 110 (2010) 2795.

DOI: 10.1021/cr900300p

Google Scholar

[156] C. Wang, H.Q. Tao, L. Cheng, Z. Liu: Biomaterials 32 (2011) 6145.

Google Scholar

[157] W. Tang, H. Xu, R. Kopelman, M.A. Philbert: Photochem Photobiol 81 (2005) 242.

Google Scholar

[158] T.Y. Ohulchanskyy, I. Roy, L.N. Goswami, Y.H. Chen, E.J. Bergey, R.K. Pandey, A.R. Oseroff, P.N. Prasad: Nano Lett 7 (2007) 2835.

DOI: 10.1021/nl0714637

Google Scholar

[159] S. Kim, T.Y. Ohulchanskyy, H.E. Pudavar, R.K. Pandey, P.N. Prasad: J Am Chem Soc 129 (2007) 2669.

Google Scholar

[160] L. Cheng, K. Yang, Y.G. Li, J.H. Chen, C. Wang, M.W. Shao, S.T. Lee, Z. Liu: Angew Chem Int Ed 50 (2011) 7385.

Google Scholar

[161] B.A. Dong, S. Xu, J.A. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L.P. Wang, H.W. Song: J Mater Chem 21 (2011) 6193.

Google Scholar

[162] A.M. Gobin, M.H. Lee, N.J. Halas, W.D. James, R.A. Drezek, J. L West: Nano Lett 7 (2007) (1929).

Google Scholar

[163] N. Lewinski, V. Colvin, R. Drezek: Small 4-1 (2008) 26.

Google Scholar

[164] H. Mattoussi, G. Palui, H.B. Na: Adv Drug Deliver Rev 64 (2012) 138–66.

Google Scholar

[165] P.C. Ray, H. Yu, P.P. Fu: J Environ Sci Health C 27-1 (2009) 1.

Google Scholar