Ion Track Matrices: Porous Structure, Deposition of Metals and Emission Properties of Obtained Replicas

Article Preview

Abstract:

This paper is devoted to production of metallic micro-and nanowires (Cu, Co, Ni and Fe) using commercial track membranes. Specially prepared matrices were also fabricated and used for this purpose. The process of electrodeposition of these metals into the nanosized pores was investigated and found to be non-linear for small pores. The obtained ensembles of nanowires could be used as the effective templates for emission of molecules in mass-spectrometry. Mass-spectra of test peptide (gramicidin deposited on substrate - ensemble of copper nanowires) was obtained and investigated in different conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-154

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.E. Possin, A Method for Forming Very Small Diameter Wires, Rev. Sci. Instrum. 41 (1970) 772-778.

Google Scholar

[2] S. Kawai, R. Ueda, Magnetic Properties of Anodic Oxide Coatings on Aluminum Containing Electrodeposited Co and Ni, J.Electrochem. Soc. 112 (1975) 32-36.

DOI: 10.1149/1.2134152

Google Scholar

[3] B.E. Fischer, R. Spohr, Production and use of nuclear tracks: imprinting structure on solids, Rev. Mod. Physics 55(1983) 907-948.

DOI: 10.1103/revmodphys.55.907

Google Scholar

[4] G.N. Flerov, Synthesis of super elements and application of nuclear physics methods in relative fields, Vestnik AN SSSR 4 (1984) 35-49.

Google Scholar

[5] B.V. Mchedlishvili, V.V. Beryozkin, V.A. Oleinikov, A.I. Vilensky, A.B. Vasilyev, Structure, physical and chemical properties and applications of nuclear filters as new class of Membranes, J. Membrane Science 79 (1993) 285-304.

DOI: 10.1016/0376-7388(93)85122-d

Google Scholar

[6] J. Vetter, R. Spohr, Application of ion track membranes for preparation of metallic Microstructures, Nucl. Instrum.Meth. Phys. Res. B 79 (1993) 691- 694.

Google Scholar

[7] T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Fabrication and Magnetic Properties of Arrays of Metallic Nanowires, Science 261 (1993) 1316-1320.

DOI: 10.1126/science.261.5126.1316

Google Scholar

[8] C.R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science 266 (1994) 1961-1966.

Google Scholar

[9] G.N. Akapiev, S.N. Dmitriev, B. Erler, V.V. Shirkova, A. Schulz, H. Pietsch, Ion track membranes providing heat pipe surfaces with capillary structures, Nuclear Instrum. Meth. Phys. Res. B 208 (2003) 133-136.

DOI: 10.1016/s0168-583x(03)01182-0

Google Scholar

[10] A. Schulz, G.N. Akapiev, V.V. Shirkova, H. Rosler, S.N. Dmitriev, A new method of fabrication of heat transfer surfaces with micro-structured profile, Nuclear Instrum. Meth. Phs. Res. B 236 (2005) 254-258.

DOI: 10.1016/j.nimb.2005.04.049

Google Scholar

[11] P. Ndungu, W. Davids, M. Nkosi M, A. Nechaev, G. Vaivars, V. Linkov, Template Synthesis of Nickel Nano-/Micro-wires: Catalysts for the Growth of Carbon Nanotubes, Pyrolysis of Liquid Petroleum Gas 24 (2007) 185-189.

Google Scholar

[12] V.A. Oleinikov, N.V. Pervov, B.V. Mchedlishvili, Track membranes for template synthesis of optical-active structures, Membranes (in Russian) 24, N4 (2004) 17-28.

Google Scholar

[13] V.A. Oleinikov, Yu.V. Tolmachyova, V.V. Berezkin, A.I. Vilensky, B.V. Mchedlishvili, Polyethileneterephthalate track membranes with conical pores: etching by water-alcohol alkali solutions, Rad. Meas. 25, N1-4 (1995) 713-714.

DOI: 10.1016/1350-4487(95)00227-6

Google Scholar

[14] A. Vilenski, Yu. Kochnev, S. Vlasov, B. Mchedlishvili, Electrolytes for etching of heavy ions latent tracks in polyethyleneterephtalate. Surface (Translated from Russian "Poverchnost") 10 (2008) 1-4.

Google Scholar

[15] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules, Science 246 (1989) 64-71.

DOI: 10.1126/science.2675315

Google Scholar

[16] B. Domon, R. Aebersold, Mass spectrometry and protein analysis, Science 312 (2006) 212- 217.

DOI: 10.1126/science.1124619

Google Scholar

[17] R. Kaufmann, Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: A novel analytical tool in molecular biology and biotechnology, J. Biotechnol. 41 (1995) 155- 175.

DOI: 10.1016/0168-1656(95)00009-f

Google Scholar

[18] P. Kraft. S. Alimpiev, E. Dratz, J. Sunner, Infrared, Surface-Assisted Laser Desorption Ionization Mass Spectrometry on Frozen Aqueous Solutions of Proteins and Peptides using Suspensions of Organic Solids, J. Am. Soc. Mass. Spectrom. 9 (1998) 912–924.

DOI: 10.1016/s1044-0305(98)00063-4

Google Scholar

[19] S.A. Trauger, E.P. Go, Z. Shen, J.V. Apon, B.J. Compton, E.S.P. Bouvier, M.G. Finn, G. Siuzdak, High Sensitivity and Analyte Capture with Desorption/Ionization Mass Spectrometry on Silylated Porous Silicon, Anal. Chem. 76 (2004) 4484-4489.

DOI: 10.1021/ac049657j

Google Scholar

[20] V.A. Oleinikov , D.L. Zagorski, S.A. Bedin, A.A. Volosnikov , P.A. Emelyanov, Y.P. Kozmin, B.V. Mchedlishvili, The study of the desorption/ionization from the replicas of etched ion tracks, Rad. Meas. 43 (2008) S635-S638.

DOI: 10.1016/j.radmeas.2008.04.018

Google Scholar