Swift Heavy Ion Induced Modification in Physical Properties of Poly Methylmethacrylate (PMMA)/Nickel (Ni) Nanocomposites

Article Preview

Abstract:

We have These films were irradiated with 85 MeV C-ions at the fluences of 1 x 1011 and 1 x 1012 ions/cm2. Changes in the optical, structural, dielectric, magnetic and thermal properties of (PMMA)/Ni nanocomposites of different concentrations of nickel nanoparticles (5%, 10%, 15%) due to swift heavy ion irradiation were studied by means of UVvisible spectroscopy, X-ray diffraction, impedance gain phase analyzer, SQUID and differential scanning calorimetry. Optical properties like band gap were estimated for pure polymer and nanocomposite films from their optical absorption spectra in the wavelength range 200-800 nm. It was found that the band gap value shifted to lower energy on doping with metal nanoparticles. Differential scanning calorimetry analysis revealed a decrease in the glass transition temperature upon irradiation, which may be attributed to the scissioning of polymer chain due to ion beam irradiation which is also corroborated with XRD analysis. Surface morphology of the pristine and irradiated films was studied by scanning electron microscopy (SEM). The breakage of chemical bonds resulted in an increase of free radicals, unsaturation etc. as revealed from FTIR analysis. The dielectric properties were observed to enhance with an increase in metal compound concentration as well as with irradiation dose. This may be due to metal/polymer bonding and conversion of polymeric structure into hydrogen-depleted carbon network. Zero-Field-Cooled (ZFC)/Field-Cooled (FC) magnetization and magnetic hysteresis measurements were performed using a superconducting quantum interference device (SQUID) magnetometer from temperatures ranging from 5 K to 300 K, to investigate the magnetic properties of nanocomposites. The changes in topography of surfaces were also observed upon irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-68

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. P. Gubin, Yu. A. Koksharov, Preparation, Structure, and Properties of Magnetic Materials Based on Co-Containing Nanoparticles, Inorganic Materials 38 (11) (2002) 1085–1099.

DOI: 10.1023/a:1020950129165

Google Scholar

[2] D. Bahadur, J. Giri, Bibhuti B. Nayak, T. Sriharsha, P. Pradhan, N. K. Prasad, K. C. Barick, R. D. Ambashta, Processing, properties and some novel applications of magnetic nanoparticles, Pramana journal of physics 65 (4) (2005) 663-679.

DOI: 10.1007/bf03010455

Google Scholar

[3] Shanghua Li, Jian Qin, Andrea Fornara, Muhammet Toprak, Mamoun Muhammed, Do Kyung Kim,Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites,Nanotechnology 20 (2009) 185607 (6pp).

DOI: 10.1088/0957-4484/20/18/185607

Google Scholar

[4] S. Shekhar, E. P. Sajitha, V. Prasad, S. V. Subramanyam, High coercivity below percolation threshold in polymer nanocomposite, Journal of Applied Physics 104 (2008) 083910 (4 ages).

DOI: 10.1063/1.3000607

Google Scholar

[5] Veronica Sáez and Timothy J. Mason, Sonoelectrochemical Synthesis of Nanoparticles, Molecules 14 (2009) 4284-4299.

DOI: 10.3390/molecules14104284

Google Scholar

[6] J. Alam, U. Riaz, S. Ahmad, Effect of Ferrofluid Concentration on Electrical and Magnetic Properties of the Fe3O4/PANI Nanocomposites, Journal of Magnetism and Magnetic Materials 314 (2007) 93–99.

DOI: 10.1016/j.jmmm.2007.02.195

Google Scholar

[7] F. C. Fonseca, G. F. Goya, R. F. Jardim, R. Muccillo, N. L. V. Carren˜o, E. Longo, and E. R. Leite, Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2, Physical Review B 66 (2002) 104406 (5 pages).

DOI: 10.1557/proc-746-q6.6

Google Scholar

[8] E. Muhammad Abdul Jamal, P. A. Joy, Philip Kurian, M. R. Anantharaman, Synthesis of nickel-rubber nanocomposites and evaluation of their dielectric properties, Materials Science and Engineering B 156 (2009) 24-31.

DOI: 10.1016/j.mseb.2008.10.041

Google Scholar

[9] E. Muhammad Abdul Jamal, P. A. Joy, P. Mohanan, Philip Kurian, M. R. Anantharaman,Effect of nickel nano-fillers on the dielectric and magnetic properties of composites based on rubber in the X-band (Published online first, Applied Physics A

DOI: 10.1007/s00339-009-5284-1

Google Scholar

[10] Sejal Shah, N.L. Singh, Anjum Qureshi, Dolly Singh, K.P. Singh,V. Shrinet, A. Tripathi, Dielectric and structural modification of proton beam irradiated polymer composite, Nuclear Instruments and Methods in Physics Research B 266 (2008) 1768–1774

DOI: 10.1016/j.nimb.2007.11.061

Google Scholar

[11] N. L. Singh, S. Shah, A. Qureshi, A Tripathi, F Singh, D. K. Avasthi, P. M. Raole, Effect of ion beam irradiation on metal particle doped polymer composites, Bull. Mater. Sci.34(1) (2011) 81–88.

DOI: 10.1007/s12034-011-0040-5

Google Scholar

[12] N. L. Singh, S. Shah, A. Qureshi, F. Singh, D. K. Avasthi, V. Ganesan, Swift heavy ion induced modification in dielectric and microhardness properties of polymer composites, Polymer Degradation and Stability 93(6) (2008) 1088-1093.

DOI: 10.1016/j.polymdegradstab.2008.03.015

Google Scholar

[13] S. Agrawal, S. Srivastava, Sumit Kumar, S. S. Sharma, B. Tripathi, M. Singh, Y. K. Vijay, Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA, Bull. Mater. Science 32(6) (2009) 569–573.

DOI: 10.1007/s12034-009-0086-9

Google Scholar

[14] S. Sharma, R. Vyas, S. Shrivastava, Y. K. Vijay, Effect of swift heavy ion irradiation on photoluminescence properties of ZnO/PMMA nanocomposite films, Physica B 406 (2011) 3232-3233.

DOI: 10.1016/j.physb.2011.05.030

Google Scholar

[15] K. Singh Samra, S. Thakur, L. Singh, Structural, thermal and optical behavior of 84 MeV oxygen and 120 MeV silicon ions irradiated PES, Nuclear Instruments and Methods in Physics Research B 269 (2011) 550–554.

DOI: 10.1016/j.nimb.2011.01.007

Google Scholar

[16] R. Kumar, S. Asad Ali , A. K. Mahur , H. S. Virk , F. Singh , S. A. Khan ,D. K. Avasthi, R. Prasad, Study of optical band gap and carbonaceous clusters in swift heavy ion irradiated polymers with UV–Vis spectroscopy, Nuclear Instruments and Methods in Physics Research B 266 (2008) 1788–1792.

DOI: 10.1016/j.nimb.2008.01.010

Google Scholar

[17] N. Bajwa, K. Dharamvir, V. K. Jindal, A. Ingale, D. K. Avasthi, R. Kumar, A. Tripathi, Swift Heavy Ion Induced Modification Studies of C60 Thin Films, Journal Of Applied Physics 94 (2003) 326-333.

DOI: 10.1063/1.1581381

Google Scholar

[18] Ana Bettencourt and Antonio J. Almeida, Poly(methyl methacrylate) particulate carriers in drug delivery, Journal of Microencapsulation, 2012, 1–15.

DOI: 10.3109/02652048.2011.651500

Google Scholar

[19] P.K. Khanna, Priyesh V. More, Jagdish P. Jawalkar, B.G. Bharate, Effect of reducing agent on the synthesis of nickel nanoparticles, Materials Letters 63 (2009) 1384–1386.

DOI: 10.1016/j.matlet.2009.02.013

Google Scholar

[20] A. Semwal, A. Negi, R. G. Sonkawade, J. M. S. Rana, R. C. Ramola, Effect of swift heavy ion irradiation on optical and structural properties of polysulphones polymer films, Indian J of pure and App Phy 48 (2010) 496-499.

Google Scholar

[21] H S Virk, P S Chandi And A K Srivastava, Physical and chemical response of 70 MeV carbon ion irradiated Kapton- H polymer, Bull. Mater. Sci. 24(5) (2001) 529–534.

DOI: 10.1007/bf02706726

Google Scholar

[22] L. Singh, K. Singh Samra, Opto-structural characterization of proton (3 MeV) irradiated polycarbonate and polystyrene, Radiation Physics and Chemistry 77 (2008) 252–258.

DOI: 10.1016/j.radphyschem.2007.05.009

Google Scholar

[23] A. Das, S. Dhara and A. Patnaik, Fractal nature of p-bonded nanocrystalline clusters: A N+ beam induced phenomenon in poly (2,6-dimethyl-1,4-phenylene Oxide), Physical Rev B 59 (1999) 11069.

DOI: 10.1103/physrevb.59.11069

Google Scholar

[24] Anjum Qureshi , Dolly Singh , N.L. Singh, S. Ataoglu , Arif N. Gulluoglu , Ambuj Tripathi, D.K. Avasthi, Effect of irradiation by 140 Mev Ag 11+ ions on the optical and electrical properties of polypropylene/TiO2 composite, Nuclear Instruments and Methods in Physics Research B 267 (2009) 3456-3460.

DOI: 10.1016/j.nimb.2009.07.016

Google Scholar

[25] A. K. Srivastava, H. S. Virk, Modifiaction of optical response of Polyvinyl Aceate induced by 250 keV D+ion bombardment, J. Polym. Mater. 17 (2000) 325-328.

Google Scholar

[26] N.L. Singh, Sejal Shah , Anjum Qureshi , K.P. Singh , V. Shrinet , P.K. Kulriya , A. Tripathi, Radiation induced modification of Organometallic compound dispersed polymer composites, Radiation Effects & Defects in Solids 163(2) (2008) 169-177.

DOI: 10.1080/10420150701688537

Google Scholar

[27] R. Kumar, U. De, R. Prasad, Physical and chemical response of 70 MeV carbon ion irradiated polyether sulphone polymer, Nucl. Instrum. Methods B 248 (2006) 279-283.

DOI: 10.1016/j.nimb.2006.03.185

Google Scholar

[28] N. L. Singh, D. Singh, A. Qureshi, Swift heavy ion-induced modification of the physical properties of polymethyl methacrylate/carbon black composites, Radiation Effects & Defects in Solids 66(8-9) (2011) 640–647.

DOI: 10.1080/10420150.2011.583245

Google Scholar

[29] R. Vijaya Kumar, Yu. Koltypin, O. Palchik, A. Gedanken, Preparation and characterization of nickel–polystyrene nanocomposite by ultrasound irradiation, Journal of Applied Polymer Science 86 (2002) 160–165.

DOI: 10.1002/app.10930

Google Scholar

[30] Chaitali Gavade, N. L. Singh, D. K. Avasthi , Alok Banerjee, Effect of SHI on dielectric and magnetic properties of metal oxide/PMMA nanocomposites, Nuclear Instruments and Methods in Physics Research B 268 (2010) 3127-3131.

DOI: 10.1016/j.nimb.2010.05.069

Google Scholar

[31] Paramjit Singh, Rajesh Kumar, H. S. Virk, Rajendra Prasad, Modification of optical, chemical and structural response of polymethyl methacrylate polymer by 70 MeV carbon ion irradiation, Ind. J. Pure and Appl. Phys. 48 (2010) 321-325.

Google Scholar

[32] S. Manna, A. K. Deb, J. Jagannath, and S. K. De, Synthesis and Room Temperature Ferromagnetism in Fe Doped NiO Nanorods, J. Phys. Chem. C 112 (29) (2008) 10659- 10662.

DOI: 10.1021/jp711943m

Google Scholar

[33] Anjum Qureshi, N. L. Singh, Sejal Shah, F. Singh, D. K. Avasthi, Ion Beam Modification of Polymethyl methacrylate (PMMA) Polymer Matrix Filled with Organometallic Complex, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 45 (2008) 265-270.

DOI: 10.1080/10601320701863668

Google Scholar

[34] Anjum Qureshi, N. L. Singh, A.K. Rakshit, F. Singh, D.K. Avasthi, Swift heavy ion induced modification in polyimide films, Surface & Coatings Technology 201 (2007) 8308–8311.

DOI: 10.1016/j.surfcoat.2006.10.055

Google Scholar

[35] Amit L. Sharma, Alok Srivastava, Ion beam induced modifications in nitroso substituted polyaniline: Spectral and electrical studies, Current Applied Physics 7 (2007) 650–654.

DOI: 10.1016/j.cap.2007.02.001

Google Scholar

[36] G. Sui, S. Jana, W.H. Zhong, M.A. Fuqua, C.A. Ulven, Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites, Acta Materialia 56 (2008) 2381– 2388.

DOI: 10.1016/j.actamat.2008.01.034

Google Scholar

[37] T. Phukan, D.Kanjilal, T. D. Goswami, Dielectric response of irradiated PADC polymer track detector, Nucl. Instr. And Meth. B 234 (2005) 520–524.

DOI: 10.1016/j.nimb.2005.02.022

Google Scholar

[38] P. Balaji Bhargav, B. A. Sarada, A. K. Sharma And V.V. R. N. Rao, Electrical Conduction and Dielectric Relaxation Phenomena of PVA Based Polymer Electrolyte Films, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 47 (2010) 131–137.

DOI: 10.1080/10601320903458564

Google Scholar