Ion Irradiation Effects in some Electro-Active and Engineering Polymers Studies by Conventional and Novel Techniques

Article Preview

Abstract:

The effect of various radiations to a polymer is more complex and intense, compared to that in other materials, in view of the more complex structure and low bonding energies (5 10 eV for covalent bonds of the main carbon chain). Since the energy delivered to the polymer in most irradiations (including even beta and gamma rays of 1 to 10 MeV) exceeds this energy by many orders of magnitude, there is a high risk of radiation damage to all kind of polymers. However, engineering polymers (PC, PMMA, PVC, etc. and newer ones) as well as electro-active and other functional polymers (conducting polymers, polymer electrolytes) are finding ever increasing applications, often as nanocomposites, e.g. chemical and biomedical applications, sensors, actuators, artificial muscles, EMI shielding, antistatic and anticorrosion coatings, solar cells, light emitters, batteries and supercapacitors. Critical applications in spacecrafts, particle accelerators, nuclear plants etc. often involve unavoidable radiation environments. Hence, we need to review radiation damage in polymers and encourage use of newer tools like positron annihilation spectroscopy, micro-Raman spectroscopy and differential scanning calorimetry (DSC). Present review focuses on irradiation effects due to low energy ions (LEIs) and swift heavy ions (SHIs) on electro-active and engineering polymers, since gamma-and electron-beam-irradiations have been more widely studied and reviewed. Radiation damage mechanisms are also of great theoretical interest. Contents

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-49

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Dong, T. Bell, State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties, Surf. Coatings Technol. 111 (1999) 29–40.

DOI: 10.1016/s0257-8972(98)00698-7

Google Scholar

[2] L. Calcagno and G. Foti, Ion irradiation of polymers, Nucl. Instrum. Meth. B 59/60 (1991) 1153-1158.

Google Scholar

[3] R. L. Clough, High energy radiation of polymers - a review of commercial processes and emerging applications, Nucl. Instrum. Meth. B 185 (2001) 8-33.

Google Scholar

[4] Serge Bouffard, Benoit Gervais, Carole Leroy, Basic Phenomena induced by swift heavy ions in polymers, Nucl. Instrum. Meth. B 105 (1995) l-4.

Google Scholar

[5] G.G. Wallace, G. M. Spinks, L. A. P. Kane-Maguire and P. R. Teasdale, 2003 Conductive Electroactive Polymers–Intelligent Materials System, 2nd edn. (Boca Raton, FL: CRC Press LLC) Chapter 1, 2000 NW Corporate Blvd.

DOI: 10.1201/9781420031898

Google Scholar

[6] D. T. McQuade, Conjugated Polymer-Based Chemical Sensors, Chem. Rev. 100 (2000) 2537–2574.

Google Scholar

[7] M. M. Ayad, N. Prastomo, Atsunori Matsuda, Jaroslav Stejskal, Sensing of silver ions by nanotubular polyaniline film deposited on quartz-crystal in a microbalance, J. Synth. Met. 160 (2010) 42–46.

DOI: 10.1016/j.synthmet.2009.09.030

Google Scholar

[8] S. Banerjee, D. Konwar, A. Kumar, Polyaniline nanofiber reinforced nanocomposite coated quartz crystal microbalance based highly sensitive free radical sensors, Sens. Actuators B 171– 172 (2012) 924– 931.

DOI: 10.1016/j.snb.2012.06.005

Google Scholar

[9] R. H. Baughman, Conducting polymer artificial muscles, J. Synth. Met. 78 (1996) 339–353.

Google Scholar

[10] E. Smela, Conjugated Polymer Actuators for Biomedical Applications, Adv. Mater. 15 (2003) 481–494.

DOI: 10.1002/adma.200390113

Google Scholar

[11] E. W. H. Jager, E. Smela, O. Inganäs, Microfabricating Conjugated Polymer Actuators, Science 290 (2000) 1540-1545.

DOI: 10.1126/science.290.5496.1540

Google Scholar

[12] J. Joo and C. Y. Lee, High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers, J. Appl. Phys. 88 (2000) 513-518.

DOI: 10.1063/1.373688

Google Scholar

[13] Y. Wang, X. Jing, Intrinsically conducting polymers for electromagnetic interference shielding, Polym. Adv. Technol. 16 (2005) 344–351.

DOI: 10.1002/pat.589

Google Scholar

[14] Jean-Michel Pernaut, John R. Reynolds, Use of Conducting Electroactive Polymers for Drug Delivery and Sensing of Bioactive Molecules. A Redox Chemistry Approach, J. Phys. Chem. B 104 (2000) 4080-4090.

DOI: 10.1021/jp994274o

Google Scholar

[15] K. Kontturi, P. Pentti, Goran Sundholm, Polypyrrole as a model membrane for drug delivery, J. Electroanal. Chem. 453 (1998) 231–238.

DOI: 10.1016/s0022-0728(98)00246-0

Google Scholar

[16] K. S. Ryu, K. M. Kim, Y. J. Park, N. -G. Park, M. G. Kang, S. H. Chang, Redox supercapacitor using polyaniline doped with Li salt as electrode, Solid State Ionics 152–153 (2002) 861–866.

DOI: 10.1016/s0167-2738(02)00386-7

Google Scholar

[17] G. A. Snook, P. Kao, A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1–12.

DOI: 10.1016/j.jpowsour.2010.06.084

Google Scholar

[18] S. Gunes, H. Neugebauer, N. S. Sariciftci, Conjugated polymer based organic solar cells, Chem. Rev. 107 (2007) 1324−1338.

DOI: 10.1021/cr050149z

Google Scholar

[19] J. M. Garces, D. J. Moll, J. Bicerano, R. Fibiger, D. G. McLeod, Polymeric nanocomposites for automotive applications, Adv. Mater. 12 (2000) 1835-1839.

DOI: 10.1002/1521-4095(200012)12:23<1835::aid-adma1835>3.0.co;2-t

Google Scholar

[20] P. Camille Lamaze, J. Ghilane, H. Randriamahazaka, J. C. Lacroix, (2010) Electroactive Conducting Polymers for the Protection of Metals against Corrosion: from Micro- to Nanostructured Films, in Nanostructured Conductive Polymers (ed. A. Eftekhari), Ch.16, John Wiley & Sons, Ltd, Chichester, UK.

DOI: 10.1002/9780470661338

Google Scholar

[21] K. Ueno, The radiation crosslinking process and new products, Radiat. Phys. Chem. 35 (1990) 126-131.

Google Scholar

[22] B. J. Lyons, Radiation crosslinking of fluoropolymers- a review, Radiat. Phys. Chem. 45 (1995) 159-174.

Google Scholar

[23] P. Cook, R. Halperin, Arthur Charlesby—His impact on creating a new industry, Radiat. Phys. Chem. 51 (1998) 7-8.

Google Scholar

[24] P. Cook, Impact and benefit of radiation technology, Radiat. Phys. Chem. 35 (1990) 7-8.

Google Scholar

[25] I. Legocka, Z. Zimek, K. Mirkowski, A. Nowicki, presented at the Fourth International Symposium on Ionizing Radiation and Polymers, 24-28 September, 2000.

Google Scholar

[26] T. Descamps, The practical experience of a total conversion to high energy electron beam processing, Radiat. Phys. Chem. 46 (1995) 439.

Google Scholar

[27] K. J. L. Burg, S. W. Shalaby, in: R. L. Clough, S. W. Shalaby (Eds.), Irradiation of Polymers, Fundamentals and Technology Applications, ACS books, Washington, DC, 1996, p.240.

Google Scholar

[28] S. W. Shalaby, C. L. Linden Jr., in: R. L. Clough, S. W. Shalaby (Eds.), Irradiation of polymers: Fundamentals and Technological Applications, ACS books, Washington, DC, 1996, p.246.

DOI: 10.1021/bk-1996-0620

Google Scholar

[29] J. M. Rosiak, in: R. L. Clough, S. Shalaby (Eds.), Radiation Effects on Polymers, American Chemical Society Books, Washington, DC, 1991, p.271.

Google Scholar

[30] J. M. Rosiak, Radiation formation of hydrogels for drug delivery, J. Controlled Release 31 (1994) 9-19.

DOI: 10.1016/0168-3659(94)90246-1

Google Scholar

[31] I. Kaetsu, A. Singh, Editorial, Radiat. Phys. Chem. 55 (1999) 111.

Google Scholar

[32] O. Guven, M. Sen, E. Karadag, D. Saraydin, A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes, Radiat. Phys. Chem. 56 (1999) 381-386.

Google Scholar

[33] A. B. Lugao, L. D. B. Machado, L. F. Miranda, M. R. Alvarez, J. M. Rosiak, Study of wound dressing structure and hydration/dehydration properties, Radiat. Phys. Chem. 52 (1998) 319-322.

DOI: 10.1016/s0969-806x(98)00160-1

Google Scholar

[34] N. Betz, Ion track grafting, Nucl. Instrum. Meth. B 105 (1995) 55-62.

Google Scholar

[35] M.-C. Porte-Durrieu, C. Aymes-Chodur, N. Betz, B. Brouillaud, F. Rouais, A. Le Moel, C. Baquey, Synthesis of biomaterials by swift heavy ion grafting :Preliminary results of haemocompatibility, Nucl. Instrum. Meth. B 131 (1997) 364-375.

DOI: 10.1016/s0168-583x(97)00341-8

Google Scholar

[36] N. Betz, E. Balanzat, A. Le Moël, J. P. Duraud, Grafting of polymers after swift heavy ion irradiation, Radiation Effects and Defects in Solids 126 (1993) 221-224.

DOI: 10.1080/10420159308219713

Google Scholar

[37] S. Chawla, A.K. Ghosh, D. K. Avasthi, P. Kulriya and S Ahmad, Functionalization of industrial polypropylene films via the swift-heavy-ion-induced grafting of glycidyl methacrylate, J. Appl. Poly. Sci. 105 (2007) 3578-3587.

DOI: 10.1002/app.26425

Google Scholar

[38] R. Mazzei, G. Garcı́a Bermúdez, N. Betz and E. Cabanillas, Swift heavy ion induced graft polymerization in track etched membranes' submicroscopic pores, Nucl. Instrum. Meth. B 226 (2004) 575-584.

DOI: 10.1016/j.nimb.2004.08.001

Google Scholar

[39] E. Adem, M. Avalos-Borja, D. Carrillo, M. Vazquez, E. Sanchez, M. P. Carreon, G. Burillo, Crosslinking of recycled polyethylene by gamma and electron beam irradiation, Radiat. Phys. Chem. 52 (1998) 171-176.

DOI: 10.1016/s0969-806x(98)00134-0

Google Scholar

[40] J. C. M. Suarez, E. B. Mano, R. A. Pereira, Thermal behavior of gamma-irradiated recycled polyethylene blends, Polym. Degrad. Stab. 69 (2000) 217-222.

DOI: 10.1016/s0141-3910(00)00065-3

Google Scholar

[41] J. C. M. Suarez, E. B. Mano, C. M. C. Bonelli, Effects of gamma-irradiation on mechanical characteristics of recycled polyethylene blends, Polym. Eng. Sci. 39 (1999) 1398-1403.

DOI: 10.1002/pen.11530

Google Scholar

[42] J. L. Sanchez, J. A. Van kan, T. Osipowicz, S. V. Springham, F. Watt, A high resolution beam scanning system for deep ion beam lithography, Nucl. Instrum. Meth. B 136-138 (1998) 385-389.

DOI: 10.1016/s0168-583x(97)00878-1

Google Scholar

[43] J. A. Van kan, J. L. Sanchez, B. Xu, T. Osipowicz, F. Watt, Micromachining using focused high energy ion beams: Deep Ion Beam Lithography, Nucl. Instrum. Meth. B 148 (1999) 1085-1089.

DOI: 10.1016/s0168-583x(98)90667-x

Google Scholar

[44] S. K. Chakravarti, J.Vetter, Morphology of etched pores and microstructures fabricated from nuclear track filters, Nucl. Instrum. Meth. B 62 (1991) 109-115.

DOI: 10.1016/0168-583x(91)95936-8

Google Scholar

[45] A.Biswas, D. K.Avasthi, B. K.Singh, S.Lotha, J. P. Singh, D. Fink, B. K.Yadav, B.Bhattacharya, S. K.Bose, Resonant electron tunneling in single quantum well heterostructure junction of electrodeposited metal semiconductor nanostructures using nuclear track filters, Nucl. Instrum. Meth. B 151 (1999) 84-88.

DOI: 10.1016/s0168-583x(99)00086-5

Google Scholar

[46] N. Reber, H. Omichi, R.Spohr, M.Tamada, A. Wolf, M.Yoshida, Thermal switching of grafted single ion tracks, Nucl. Instrum. Meth. B 105 (1995) 275-277.

DOI: 10.1016/0168-583x(95)00578-1

Google Scholar

[47] D. Fink, L.T. Chadderton, K. Hoppe, W.R. Fahrner, A. Chandra, A. Kiv, Swift-heavy ion track electronics (SITE), Nucl. Instrum. Meth. B 261 (2007) 727–730.

DOI: 10.1016/j.nimb.2007.03.018

Google Scholar

[48] L. W. Brown, T. Venkatesan, and A. Wagner, Ion beam lithography, Nucl. Instrum. Meth. B 191 (1981) 157-168.

Google Scholar

[49] P. Apel, Swift ion effects in polymers: industrial applications, Nucl. Instrum. Meth. B 208 (2003) 11–20.

Google Scholar

[50] E. Balanzat, N. Betz, S. Bouffard, Swift heavy ion modification of polymers, Nucl. Instrum. Meth. B 105 (1995) 46-54.

Google Scholar

[51] Shiv Govind Prasad, Abhijit De, Udayan De, Structural and Optical Investigations of Radiation Damage in Transparent PET Polymer Films, Int. J. Spectroscopy, Volume 2011, Article ID 810936, 7 pages.

DOI: 10.1155/2011/810936

Google Scholar

[52] T. Phukan, D. Kanjilal, T.D. Goswami, H.L. Das, Study of optical properties of swift heavy ion irradiated PADC polymer, Radiat. Meas. 36 (2003) 611 – 614.

DOI: 10.1016/s1350-4487(03)00210-5

Google Scholar

[53] H.S. Virk, A.K. Srivastava, Modification of optical, chemical and structural response of CR-39 polymer by 50 MeV lithium ion irradiation, Radiat. Meas. 34 (2001) 65–67.

DOI: 10.1016/s1350-4487(01)00122-6

Google Scholar

[54] J. C. Pivin, Contribution of ionizations and atomic displacements to the hardening of ion-irradiated polymers, Thin Solid Films 263 (1995) 185-193.

DOI: 10.1016/0040-6090(95)06561-x

Google Scholar

[55] A. Biswas a, S. Lotha, D. Fink, J.P. Singh, D.K. Avasthi, B.K. Yadav, S.K. Bose, D.T. Khating, A.M. Avasthi, The effects of swift heavy ion irradiation on the radiochemistry and melting characteristics of PET, Nucl. Instrum. Meth. B 159 (1999) 40-51.

DOI: 10.1016/s0168-583x(99)00486-3

Google Scholar

[56] L. Calcagno, G. Compagnini, G. Foti, Structural modification of polymer films by ion irradiation, Nucl. Instrum. Meth. B 65 (1992) 413-422.

Google Scholar

[57] A. M. P. Hussain, A. Kumar, Ion irradiation induced electrochemical stability enhancement of conducting polymer electrodes in supercapacitors, The Eur. Phys. J.- Appl. Phys. 36 (2006) 105-109.

DOI: 10.1051/epjap:2006111

Google Scholar

[58] A. Bhattacharya, Radiation and industrial polymers, Prog. Polym. Sci. 25 (2000) 371-401.

Google Scholar

[59] T. Sasuga, S. Kawanishi, M. Nishii, T. Seguchi, I. Kohno, Effects of ion irradiation on the mechanical properties of several polymers, Int. J. Radiat. Appl. Instrum. Part C. Radiat. Phys. Chem. 37 (1991) 135-140.

DOI: 10.1016/1359-0197(91)90212-k

Google Scholar

[60] D. Fink, Fundamentals of ion-irradiated polymers. Vol. 63. Springer Verlag, 2004.

Google Scholar

[61] D. Fink, L. T. Chadderton, Ion-Solid Interaction: Status and Perspectives, Braz. J. Phys. 35 (2005) 735-740.

Google Scholar

[62] E.H. Lee, G.R. Rao, M.B. Lewis, C.K. Mansur, Effects of electronic and recoil processes in polymers during ion implantation, J. Mater. Res. 9 (1994) 1043–1050.

DOI: 10.1557/jmr.1994.1043

Google Scholar

[63] T. Venkatesan, L. Calcagno, B.S. Elman, G. Foti, in: P. Mazzoldi, G.W. Arnold (Eds.), Ion Beam Modification of Insulators, Elsevier, Amsterdam, 1987, p.301–379.

Google Scholar

[64] E. H. Lee, Ion-beam modification of polymeric materials-fundamental principles and applications, Nucl. Instrum. Meth. B 151 (1999) 29-41.

Google Scholar

[65] M. Toulemonde, C. Trautmann, E. Balanzat, Klas Hjort, A. Weidinger, Track formation and fabrication of nanostructures with MeV-ion beams, Nucl. Instrum. Meth. B 216 (2004) 1-8.

DOI: 10.1016/j.nimb.2003.11.013

Google Scholar

[66] T. Seguchi, H. Kudoh, M. Sugimoto, Y. Hama, Ion beam irradiation effect on polymers. LET dependence on the chemical reactions and change of mechanical properties, Nucl. Instrum. Meth. B 151 (1999) 154-160.

DOI: 10.1016/s0168-583x(99)00132-9

Google Scholar

[67] V. Picq, E. Balanzat, Ion-induced molecular emission of polymers: analytical potentialities of FTIR and mass spectroscopy, Nucl. Instrum. Meth. B 151 (1999) 76-83.

DOI: 10.1016/s0168-583x(99)00095-6

Google Scholar

[68] Y. Hama, T. Oka, H. Kudoh, M. Sugimoto, T. Seguchi, Irradiation effects in polymers by heavy ions: The distribution of the chemical structure transformation in polymers, Nucl. Instrum. Meth. B 208 (2003) 123–132.

DOI: 10.1016/s0168-583x(03)00984-4

Google Scholar

[69] L. Calcagno, Ion-chains interaction in polymers, Nucl. Instrum. Meth. B 105 (1995) 63-70.

Google Scholar

[70] E. Balanzat, S. Bouffard, A. Le Moel, N. Betz, Physico-chemical modifications induced in polymers by swift heavy ions, Nucl. Instrum. Meth. B 91 (1994) 140-145.

DOI: 10.1016/0168-583x(94)96204-9

Google Scholar

[71] N. Betz, E. Petersohn, A. Le Moel, Free radicals in Swift heavy Ion irradiated Fluoropolymers: An electron Study Spin resonance, Radiat. Phys. Chem. 47 (1996) 411-414.

DOI: 10.1016/0969-806x(95)00127-j

Google Scholar

[72] A. Chapiro, Chemical modifications in irradiated polymers, Nucl. Instrum. Meth. B 32 (1988) 111-114.

Google Scholar

[73] M.B. Lewis, E.H. Lee, Residual gas and ion-beam analysis of ion-irradiated polymers, Nucl. Instrum. Meth. B 61 (1991) 457-465.

Google Scholar

[74] G. Marletta, F. Iacona, Chemical and physical property modifications induced by ion irradiation in polymers, in Materials and Processes for Surface and Interface Engineering, pp.597-640. Springer, Netherlands, 1995.

DOI: 10.1007/978-94-011-0077-9_16

Google Scholar

[75] A. Chapiro, Radiation Chemistry of Polymeric Systems, Interscience Publishers, London, 1962, p.354.

Google Scholar

[76] B. J. Tan, M. Fessehaie, S. L. Suib, Investigation of the surface chemistry of Teflon. 1. Effect of low energy argon ion irradiation on surface structure, Langmuir 9 (1993) 740-748.

DOI: 10.1021/la00027a022

Google Scholar

[77] R. C. Ramola, A. Alqudami, S. Chandra, S. Annapoorni, J. M. S. Rana, R. G. Sonkawade, F. Singh, D. K. Avasthi, Effects of swift heavy ions irradiation on polypyrrole thin films, Radiat. Eff. Defects Solids 163 (2008) 139-147.

DOI: 10.1080/10420150701639985

Google Scholar

[78] S. Banerjee, A. Kumar, Micro-Raman studies of swift heavy ion irradiation induced structural and conformational changes in polyaniline nanofibers, Nucl. Instrum. Meth. B 268 (2010) 2683-2687.

DOI: 10.1016/j.nimb.2010.06.003

Google Scholar

[79] D. Fink, L. T. Chadderton, Ion–solid interactions: current status, new perspectives, Radiat. Eff. Defects Solids 160 (2005) 67–83.

DOI: 10.1080/10420150500132687

Google Scholar

[80] G.D. Alton, (Ion Sources for Accelerators). No. ORNL/FTR-3546. Oak Ridge National Lab., TN (USA), 1990.

Google Scholar

[81] http://ebookbrowse.com/04-lukic-si-tee-01-11-05-ion-sources-and-accelerators-ppt-d349238946

Google Scholar

[82] J. P. Singh, R. Singh, S. Ghosh, A. Tripathi, D. Kabiraj, S. Gupta, T. Som, R. Kumar, S. K. Arora, K. Asokan, D. K. Avasthi, D. Kanjilal, N. C. Mishra, G. K. Mehta, Swift heavy ion-based materials science research at NSC. Nucl. Instrum. Meth. B 156 (1999) 206-211.

DOI: 10.1016/s0168-583x(99)00283-9

Google Scholar

[83] A. Roy, Heavy Ion Linac Booster at IUAC, New Delhi, Proc. of LINAC08, Victoria, BC, Canada, Th202, 749-753.

Google Scholar

[84] http://people.web.psi.ch/streun/empp/hpart2.pdf

Google Scholar

[85] M. C. Wintersgill, Ion implantation in polymers, Nucl. Instrum. Meth. B l (1984) 595-598.

Google Scholar

[86] G.K. Hubler, The cornucopia of beam applications, Surf. Coatings Technol. 158-159 (2002) 449–456.

DOI: 10.1016/s0257-8972(02)00272-4

Google Scholar

[87] D. J. Barber, Radiation damage in ion-milled specimens: characteristics, effects and methods of damage limitation, Ultramicroscopy 52(1993) 101-125.

DOI: 10.1016/0304-3991(93)90025-s

Google Scholar

[88] C. Borschel, M. E. Messing, M. T. Borgström, W. Paschoal Jr, J. Wallentin, S. Kumar, K. Mergenthaler, K. Deppert, C. M. Canali, H. Pettersson, L. Samuelson, C. Ronning, A new route toward semiconductor nanospintronics: highly Mn-doped GaAs nanowires realized by ion-implantation under dynamic annealing conditions, Nano Lett. 11 (2011) 3935-3940.

DOI: 10.1021/nl2021653

Google Scholar

[89] D. K. Avasthi, Swift Heavy Ions for Materials Engineering and Nanostructuring, Vol. 145, Springer Science+Business Media, 2011.

Google Scholar

[90] M. Skupinski, Nanopatterning by Swift Heavy Ions, PhD dissertation, Uppsala University, 2006. http://uu.diva-portal.org/smash/record.jsf?pid=diva2:168996

Google Scholar

[91] A. Norman, Thermal Spike Effects in Heavy-Ion Tracks, Rad. Res. Supp. 7 (1967) 33-37.

Google Scholar

[92] D. E. Lea, Actions of Radiations on Living Cells, 2nd ed., Cambridge Univ. Press, London, 1955.

Google Scholar

[93] F. Seitz, On the disordering of solids by action of fast massive particles, Discuss. Faraday Soc. 5 (1949) 271-282.

DOI: 10.1039/df9490500271

Google Scholar

[94] G. J. Dienes, G. H. Vineyard, Radiation Effects in Solids, Interscience, New York, 1957.

Google Scholar

[95] R. B. Ingalls, P. Spiegler, A. Norman, Thermal‐Spike Model of Low LET Radiolysis: Temperature Dependence of Reactions Induced by Radiolysis in Liquid Toluene, J. Chem. Phys. 41 (3) (1964) 837-840.

DOI: 10.1063/1.1725969

Google Scholar

[96] F. Seitz, On the Theory of the Bubble Chamber, Phys. Fluids 1 (1958) 2-13.

Google Scholar

[97] R. L. Fleischer, P. B. Price, R. M. Walker, Tracks of Charged Particles in Solids, Science 149 (1965) 383-393.

DOI: 10.1126/science.149.3682.383

Google Scholar

[98] R. L. Fleischer, P. B. Price, R. M. Walker, Ion Explosion Spike Mechanism for Formation of Charged‐Particle Tracks in Solids, J. Appl. Phys. 36 (1965) 3645-3652.

DOI: 10.1063/1.1703059

Google Scholar

[99] E. M. Bringa, R. E. Johnson, Coulomb Explosion and Thermal Spikes, Phys. Rev. Lett. 88 (2002) 165501 (4 pp).

DOI: 10.1103/physrevlett.88.165501

Google Scholar

[100] W. Schnabel, S. Klaumunzer, The Effects of Ion-Beam Irradiation of polymers, Radiat. Phys. Chem. 37 (1991) 131-134.

Google Scholar

[101] L. Calcagno, G. Foti, Density Enhancement in ion implanted polymers, Nucl. Instrum. Meth. B 19/20 (1987) 895-898.

Google Scholar

[102] H. Kudoh, T. Sasuga, T. Seguchi, Y. Katsumura, High-energy-ion-irradiation effects on polymer materials: 3. The sensitivity of cellulose triacetate and poly(methyl methacrylate), Polymer 37 (1996) 2903-2908.

DOI: 10.1016/0032-3861(96)89385-2

Google Scholar

[103] H. Kudoh, T. Sasuga, T. Seguchi, Y. Katsumura, High energy ion irradiation effects on polymer material: 4. Heavier ion irradiation effects on mechanical properties of PE and PTFE, Polymer 37 (1996) 3737-3739.

DOI: 10.1016/0032-3861(96)00193-0

Google Scholar

[104] D. Ila, A.L. Evelyn, G.M. Jenkins, Ion beam induced carbonization of partially cured phenolic resin, Nucl. Instrum. Meth. B 91(1994) 580-583.

DOI: 10.1016/0168-583x(94)96290-1

Google Scholar

[105] D. M. Rück, S. Brunner, K. Tinschert, and W. F. X. Frank, Production of buried waveguides in PMMA by high energy ion implantation, Nucl. Instrum. Meth. B 106 (1995) 447-451.

DOI: 10.1016/b978-0-444-82334-2.50086-1

Google Scholar

[106] E. Balanzat, S. Bouffard, A. Bouquerel, J. Devy, Chr. Gate, Swift heavy ion irradiation of polystyrene, Nucl. Instrum. Meth. B 116 ( 1996) 159- 163.

DOI: 10.1016/0168-583x(96)00121-8

Google Scholar

[107] A. Licciardello, M. E. Fragala, G. Foti, G. Compagnini, O. Puglisi, Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate, Nucl. Instrum. Meth. B 116 (1996) 168-172.

DOI: 10.1016/0168-583x(96)00029-8

Google Scholar

[108] H. Kupfer, G. K. Wolf, Plasma and ion beam assisted metallization of polymers and their application, Nucl. Instrum. Meth. B 166 (2000)722-731.

Google Scholar

[109] O. Puglisi, M. E. Fragala, K. G. Lynn, M. Petkov, M. Weber, A. Somoza, A. Dupasquier, F. Quasso, Study of ion beam induced depolymerization using positron annihilation techniques, Nucl. Instrum. Meth. B 175-177 (2001) 605-609.

DOI: 10.1016/s0168-583x(01)00343-3

Google Scholar

[110] J. Chen, F. Zhu, H. Pan, J. Cao, D. Zhu, H. Xu, Q. Cai, J. Shen, L. Chen, Z. He Surface modification of ion implanted ultra high molecular weight polyethylene, Nucl. Instrum. Meth. B 169 (2000) 26-30.

DOI: 10.1016/s0168-583x(00)00011-2

Google Scholar

[111] N. Singh, A. Sharma, D.K. Avasthi, Effects of high energy (MeV) ion beam irradiation on polyethylene terephthalate, Nucl. Instrum. Meth. B 206 (2003) 1120–1123.

DOI: 10.1016/s0168-583x(03)00935-2

Google Scholar

[112] F.Z. Cui, Z.S. Luo, Biomaterials modification by ion-beam processing, Surf. Coatings Technol. 112 (1999) 278–285.

DOI: 10.1016/s0257-8972(98)00763-4

Google Scholar

[113] B. Pignataro, E. Conte, A. Scandurra, G. Marletta, Improved cell adhesion to ion beam irradiated polymer surfaces, Biomoterials 18 (1997) 1461-1470.

DOI: 10.1016/s0142-9612(97)00090-2

Google Scholar

[114] Rajesh Kumar, Rajendra Prasad, Y.K. Vijay, N.K. Acharya, K.C. Verma, Udayan De, Ion beam modification of CR-39 (DOP) and polyamide nylon-6 polymers, Nucl. Instrum. Meth. B 212 (2003) 221–227.

DOI: 10.1016/j.nimb.2003.09.006

Google Scholar

[115] J.K. Quamara, M. Garg, T. Prabhavathi, Effect of high-energy heavy ion irradiation on dielectric relaxation behaviour of kapton-H polyimide, Thin Solid Films 449 (2004) 242–247.

DOI: 10.1016/j.tsf.2003.10.099

Google Scholar

[116] A. Tripathi, Amit Kumar, F. Singh, D. Kabiraj, D.K. Avasthi, J.C. Pivin, Ion irradiation induced surface modification studies of polymers using SPM, Nucl. Instrum. Meth. B 236 (2005) 186–194.

DOI: 10.1016/j.nimb.2005.04.059

Google Scholar

[117] A. Qureshi, N. L. Singh, S. Shah, F. Singh, D. K. Avasthi, Ion Beam Modification of Polymethyl methacrylate (PMMA) Polymer Matrix Filled with Organometallic Complex, J. Macromol. Sci. Part A: Pure and Appl. Chem. 45 (2008) 265-270.

DOI: 10.1080/10601320701863668

Google Scholar

[118] A. K. Srivastava, H. S. Virk, 50 MeV lithium ion beam irradiation effects in poly vinylidene fluoride (PVDF) polymer, Bull. Mater. Sci. 23 (2000) 533-538.

DOI: 10.1007/bf02903896

Google Scholar

[119] T. Steckenreiter, E. Balanzat, H. Fuess, C. Trautmann, Pyrolytic effects induced by energetic ions in polymers, Nucl. Instrum. Meth. B 151 (1999) 161-168.

DOI: 10.1016/s0168-583x(99)00093-2

Google Scholar

[120] A. Le Bouedec, N. Betz, S. Esnouf, A. Le Moel, Swift heavy ion irradiation effects in a poly(vinylidene fluoride): spatial distribution of defects within the latent track, Nucl. Instrum. Meth. B 151 (1999) 89-96.

DOI: 10.1016/s0168-583x(99)00072-5

Google Scholar

[121] Rajesh Kumar, H.S. Virk, K.C. Verma, Udayan De, A. Saha, Rajendra Prasad, Physico-chemical modifications induced in Makrofol-N polycarbonate by swift heavy ions, Nucl. Instrum. Meth. B 251 (2006) 163–166.

DOI: 10.1016/j.nimb.2006.06.003

Google Scholar

[122] Rajesh Kumar, Udayan De, Rajendra Prasad, Physical and chemical response of 70 MeV carbon ion irradiated polyether sulphone polymer, Nucl. Instrum. Meth. B 248 (2006) 279–283.

Google Scholar

[123] Y. Sun, Z. Zhu, Z. Wang, J. Liu, Y. Jin, M. Hou, Y. Wang, J. Duan, The damage process induced by swift heavy ion in polycarbonate, Nucl. Instrum. Meth. B 212 (2003) 211–215.

DOI: 10.1016/s0168-583x(03)01735-x

Google Scholar

[124] L. Singh, R. Singh, Swift heavy ion induced modifications in polypropylene, Nucl. Instrum. Meth. B 225 (2004) 478–482.

Google Scholar

[125] L. Torrisi, Radiation damage in polyvinyltoluene (PVT), Radiat. Phys. Chem. 63 (2002) 89–92.

DOI: 10.1016/s0969-806x(01)00487-x

Google Scholar

[126] J. Davenas, X.L. Xu, G. Boiteux, D. Sage, Relation between structure and electronic properties of ion irradiated polymers, Nucl. Instrum. Meth. B 39 (1989) 754-763.

DOI: 10.1016/0168-583x(89)90891-4

Google Scholar

[127] Rajesh Kumar, S Asad Ali, A. H. Naqvi, H. S. Virk, Udayan De, D K Avasthi, Rajendra Prasad, Study of optical band gap and carbon cluster sizes formed in 100 MeV Si8+ and 145 MeV Ne6+ ions irradiated polypropylene polymer, Indian J. Phys. 83 (2009) 969-976.

DOI: 10.1007/s12648-009-0056-5

Google Scholar

[128] Rajesh Kumar, Rajendra Prasad, 70 MeV Carbon C5+ ion induced modification in polystyrene by positron annihilation, Radiat. Meas. 40 (2005) 750 – 753.

DOI: 10.1016/j.radmeas.2005.06.027

Google Scholar

[129] J. Kaur, S. K. Chakarvarti, D. Kanjilal, S. Singh, Modifications induced in the polycarbonate Makrofol KG polymer by Li (50 MeV) ion irradiation, Pramana 72 (2009) 759-764.

DOI: 10.1007/s12043-009-0068-x

Google Scholar

[130] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C.K. Chiang, A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x, J. Chem. Soc. Chem. Commun. 474 (1977) 578-580.

DOI: 10.1039/c39770000578

Google Scholar

[131] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Electrical conductivity in doped polyacetylene, Phys. Rev. Lett. 39 (1977) 1098–1101.

DOI: 10.1103/physrevlett.39.1098

Google Scholar

[132] C. K. Chiang, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, A. G. MacDiarmid, Conducting polymers: Halogen doped polyacetylene, J. Chem. Phys. 69 (1978) 5098-5104.

DOI: 10.1063/1.436503

Google Scholar

[133] C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid, Y. W. Park, H. Shirakawa, Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x, J. Am. Chem. Soc. 100 (1978) 1013–1015.

DOI: 10.1021/ja00471a081

Google Scholar

[134] A. J. Heeger, Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials, Rev. Mod. Phys. 73 (2001) 681-700.

DOI: 10.1103/revmodphys.73.681

Google Scholar

[135] A. G. MacDiarmid A. G., Nobel Lecture: ''Synthetic metals'': A novel role for organic polymers, Rev. Mod. Phys. 73 (2001) 701-712.

DOI: 10.1103/revmodphys.73.701

Google Scholar

[136] H. Shirakawa, Nobel Lecture: The discovery of polyacetylene film—the dawning of an era of conducting polymers, Rev. Mod. Phys. 73 (2001) 713-718.

DOI: 10.1103/revmodphys.73.713

Google Scholar

[137] A M P Hussain, A Kumar, F Singh and D K Avasthi, Effects of 160 MeV Ni12+ ion irradiation on HCl doped polyaniline electrode, J. Phys. D: Appl. Phys. 39 (2006) 750–755.

DOI: 10.1088/0022-3727/39/4/023

Google Scholar

[138] A.M.P. Hussain, D. Saikia, F. Singh, D.K. Avasthi, A. Kumar, Effects of 160 MeV Ni12+ ion irradiation on polypyrrole conducting polymer electrode materials for all polymer redox supercapacitor, Nucl. Instrum. Meth. B 240 (2005) 834–841.

DOI: 10.1016/j.nimb.2005.06.204

Google Scholar

[139] A. Kumar, A.M.P. Hussain, 120 MeV Si9+ ion irradiation effects on poly(3-methylthiophene) conducting polymer, Nucl. Instrum. Meth. B 251 (2006) 451–456.

DOI: 10.1016/j.nimb.2006.08.005

Google Scholar

[140] R. C. Ramola, S. Chandra, J. M. S. Rana, R. Sharma, S. Annapoorni, R. G. Sonkawade, F. Singh, D. K. Avasthi, Swift heavy ion induced modifications in structural and electrical properties of polyaniline, Current Science 97 (2009) 1453-1458.

Google Scholar

[141] G. B. V. S. Lakshmi, V. Ali, A. M. Siddiqui, P. K. Kulriya, M. Husain, M. Zulfequar, 60-MeV C5+ ion irradiation effects on conducting poly (o-toluidine)–poly vinyl chloride blend films, Radiat. Eff. Defects Solids 163 (2008) 115–122.

DOI: 10.1080/10420150701450896

Google Scholar

[142] G.B.V.S. Lakshmi, Azher M. Siddiqui, Vazid Ali, Pawan K. Kulriya, M. Zulfequar, Effects of 60 MeV C5+ ion irradiation on PmT–PVC and p-TSA doped PoT–PVC blends, Nucl. Instrum. Meth. B 266 (2008) 1685-1691.

DOI: 10.1016/j.nimb.2008.01.069

Google Scholar

[143] A. Srivastava, V. Singh, C. Dhand, M. Kaur, T. Singh, K. Witte, U. W. Scherer, Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor, Sensors 6 (2006) 262-269.

DOI: 10.3390/s6040262

Google Scholar

[144] A. Kumar, Somik Banerjee, M. Deka. Electron microscopy for understanding swift heavy ion irradiation effects on Electroactive polymers, in: A. Méndez-Vilas and J. Díaz (Eds.), Microscopy: Science, Technology, Applications and Education, 3 (2010) 1755-1768.

Google Scholar

[145] A. Kumar, Somik Banerjee, J. P. Saikia, B. K. Konwar, Swift heavy ion irradiation induced enhancement in the antioxidant activity and biocompatibility of polyaniline nanofibers, Nanotechnology 21 (2010) 175102 (8pp).

DOI: 10.1088/0957-4484/21/17/175102

Google Scholar

[146] Somik Banerjee, A. Kumar, Micro-Raman studies of swift heavy ion irradiation induced structural and conformational changes in polyaniline nanofibers, Nucl. Instrum. Meth. B 268 (2010) 2683–2687.

DOI: 10.1016/j.nimb.2010.06.003

Google Scholar

[147] Somik Banerjee, A. Kumar, Swift heavy ion irradiation induced modifications in the optical band gap and Urbach's tail in polyaniline nanofibers, Nucl. Instrum. Meth. B 269 (2011) 2798–2806.

DOI: 10.1016/j.nimb.2011.09.004

Google Scholar

[148] A. Kumar and Somik Banerjee, Swift heavy ion irradiation: a novel technique for tailoring the size of polyaniline nanofibers, Int. J. Nanosci. 10 (2011) 1-5.

DOI: 10.1142/s0219581x11007442

Google Scholar

[149] Somik Banerjee, A. Kumar, Swift heavy ion irradiation-induced structural and conformational changes in polypyrrole nanofibers, Radiat. Eff. Defect. Solids 166 (2011) 1–8.

DOI: 10.1080/10420150.2010.542560

Google Scholar

[150] Somik Banerjee, A. Kumar, Relaxation and charge transport phenomena in polyaniline nanofibers: Swift heavy ion irradiation effects, J. Non-Cryst. Solids 358 (2012) 2990–2998.

DOI: 10.1016/j.jnoncrysol.2012.07.033

Google Scholar

[151] S. Sarmah, A. Kumar, Irradiation induced crossover from 1D to 3D transport behaviors of PEDOT-titanium dioxide hybrid nanocomposites, Physica Status Solidi (a) 209 (2012) 2546-2551.

DOI: 10.1002/pssa.201228302

Google Scholar

[152] J. Hazarika, C. Nath, A. Kumar, 160 MeV Ni12+ ion irradiation effects on the dielectric properties of polyaniline nanotubes, Nucl. Instrum. Meth. B 288 (2012) 74–80.

DOI: 10.1016/j.nimb.2012.06.026

Google Scholar

[153] M. Faraday, Experimental Investigations in Electricity, B. Quaritch, London, 1839.

Google Scholar

[154] J. W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195(2010) 4554–4569.

DOI: 10.1016/j.jpowsour.2010.01.076

Google Scholar

[155] R. C. Agrawal, G. P. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D: Appl. Phys. 41 (2008) 223001-223018.

DOI: 10.1088/0022-3727/41/22/223001

Google Scholar

[156] A. M. Stephan, Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J. 42 (2006) 21-42.

Google Scholar

[157] A. Kumar, D. Saikia, F. Singh, D.K. Avasthi, Li3+ ion irradiation effects on ionic conduction in P(VDF–HFP)–(PC+DEC)–LiClO4 gel polymer electrolyte system, Solid State Ionics 177 (2006) 2575–2579.

DOI: 10.1016/j.ssi.2006.04.015

Google Scholar

[158] D. Saikia, A. Kumar, F. Singh, D. K. Avasthi, N. C. Mishra, Ionic conduction in 70-MeV C-ion-irradiated poly (vinylidenefluoride-co-hexafluoropropylene)-based gel polymer electrolytes, J. Appl. Phys. 98 (2005) 043514.

DOI: 10.1063/1.2030417

Google Scholar

[159] A. Kumar, D. Saikia, F. Singh, D.K. Avasthi, Ionic conduction in 70 MeV C5+ ion-irradiated P(VDF–HFP)–(PC+DEC)–LiCF3SO3 gel polymer electrolyte system, Solid State Ionics 176 (2005) 1585 – 1590.

DOI: 10.1016/j.ssi.2005.04.008

Google Scholar

[160] D. Saikia, A.M.P. Hussain, A. Kumar, F. Singh, D.K. Avasthi, Ionic conduction studies in Li3+ ion irradiated P(VDF–HFP)–(PC + DEC)–LiCF3SO3 gel polymer electrolyte, Nucl. Instrum. Meth. B 244 (2006) 230–234.

DOI: 10.1016/j.nimb.2005.11.153

Google Scholar

[161] A. Kumar, M. Deka, S. Banerjee, Enhanced ionic conductivity in oxygen ion irradiated poly(vinylidene fluoride-hexafluoropropylene) based nanocomposite gel polymer electrolytes, Solid State Ionics 181 (2010) 609–615.

DOI: 10.1016/j.ssi.2010.02.027

Google Scholar

[162] M. Deka, A. Kumar, Dielectric and conductivity studies of 90 MeV O7+ ion irradiated poly(ethylene oxide)/montmorillonite based ion conductor, J. Solid State Electrochem. 17 (2013) 977–986.

DOI: 10.1007/s10008-012-1951-9

Google Scholar

[163] Rajesh Kumar, Udayan De, P.M.G. Nambissan, M. Maitra, S. Asad Ali, T.R. Middya, S. Tarafdar, F. Singh, D.K. Avasthi, Rajendra Prasad, Positron lifetime studies of the dose dependence of nanohole free volumes in ion-irradiated conducting poly-(ethylene-oxide)–salt polymers, Nucl. Instrum. Meth. B 266 (2008) 1783–1787.

DOI: 10.1016/j.nimb.2007.11.059

Google Scholar

[164] A. Adla, V. Buschmann, H. Fuess, C. Trautmann, Investigation of ion tracks in polymers by transmission electron microscopy, Nucl. Instrum. Meth. B 185 (2001) 210-215.

DOI: 10.1016/s0168-583x(01)00804-7

Google Scholar

[165] A. Adla, H. Fuess, C. Trautmann, Characterization of Heavy Ion Tracks in Polymers by Transmission Electron Microscopy, J. Polym. Sci.: Part B: Polym. Phys. 41 (2003) 2892–2901.

DOI: 10.1002/polb.10614

Google Scholar

[166] C. Trautmann, Observation and chemical treatment of heavy-ion tracks in polymers, Nucl. Instrum. Meth. B 105 (1995) 81-85.

Google Scholar

[167] R. Neumann, Scanning probe microscopy of ion-irradiated materials, Nucl. Instrum. Meth. B 151 (1999) 42-55.

Google Scholar

[168] B. Pignataro, M.E. Fragala, O. Puglisi AFM and XPS study of ion bombarded poly(methy1 methacrylate), Nucl. Instrum. Meth. B 131 (1997) 141- 148.

Google Scholar

[169] V. Svorcik, E. Arenholz, V. Hnatowicz, V. Rybka, R. Ochsner, H. Ryssel, AFM surface investigation of polyethylene modified by ion bombardment, Nucl. Instrum. Meth. B 142 (1998) 349-354.

DOI: 10.1016/s0168-583x(98)00288-2

Google Scholar

[170] D. Xu, X.L. Xu, G.D . Du, R. Wong, S .C . Zou, X.H . Liu Infrared analysis of the irradiation effects in aromatic polyimide films, Nucl. Instrum. Meth. B 81 (1993) 1063-1166.

Google Scholar

[171] R. Kumar,, S. A. Ali, A. K. Mahur, H. S. Virk, F. Singh, S. A. Khan, D. K. Avasthi, R. Prasad, Study of optical band gap and carbonaceous clusters in swift heavy ion irradiated polymers with UV–Vis spectroscopy. Nucl. Instrum. Meth. B 266 (2008) 1788-1792.

DOI: 10.1016/j.nimb.2008.01.010

Google Scholar

[172] R. C. Ramola, S. Chandra, A. Negi, J. M. S. Rana, S. Annapoorni, R. G. Sonkawade, P. K. Kulriya, A. Srivastava, Study of optical band gap, carbonaceous clusters and structuring in CR-39 and PET polymers irradiated by 100MeV O7+ ions, Physica B: Condensed Matter 404 (2009) 26-30.

DOI: 10.1016/j.physb.2008.09.033

Google Scholar

[173] R. Kumar, H. S. Virk, K. C. Verma, Udayan De, A. Saha, Rajendra Prasad, Physico-chemical modifications induced in Makrofol-N polycarbonate by swift heavy ions, Nucl. Instrum. Meth. B 251 (2006) 163-166.

DOI: 10.1016/j.nimb.2006.06.003

Google Scholar

[174] R. C. Ramola, S. Chandra, J. M. S. Rana, R. G. Sonkawade, P. K. Kulriya, F. Singh, D. K. Avasthi, S. Annapoorni, A comparative study of the effect of O7+ ion beam on polypyrrole and CR-39 (DOP) polymers, J. Phys. D: Appl. Phys. 41 (2008) 115411.

DOI: 10.1088/0022-3727/41/11/115411

Google Scholar

[175] D. Karpuzov, K.L. Kostov, E. Venkova, P. Kirova, I. Katardjiev, G. Carter, XPS Study of ion beam irradiation effects in polyimide layers, Nucl. Instrum. Meth. B 39 (1989) 787-791.

DOI: 10.1016/0168-583x(89)90897-5

Google Scholar

[176] L. Torrisi, R. Percolla, Ion beam processing of polyvinylidene fluoride, Nucl. Instrum. Meth. B 117 (1996) 387-391.

Google Scholar

[177] Y. Komaki, N. Ishikawa, N Morishita, S. Takamura, Radicals in heavy ion-irradiated polyvinylidene fluoride, Radiat. Meas. 26 (1996) 123-129.

DOI: 10.1016/1350-4487(95)00286-3

Google Scholar

[178] X. Hong, Y. C. Jean, H. Yang, S. S. Jordan, W. J. Koros, Free-Volume Hole Properties of Gas-Exposed Polycarbonate Studied by Positron Annihilation Lifetime Spectroscopy, Macromol. 29 (24) (1996), 7859–7864.

DOI: 10.1021/ma9603544

Google Scholar

[179] Y. C. Jean, Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers, Microchem. J. 42 (1) (1990) 72-102.

DOI: 10.1016/0026-265x(90)90027-3

Google Scholar

[180] G. Dlubek, D. Kilburn, V. Bondarenko, J. Pionteck, R. K. Rehberg, M. A. Alam, Positron Annihilation: A Unique Method for studying polymers, Macromol. Symp. 210 (2004) 11-20.

DOI: 10.1002/masy.200450602

Google Scholar

[181] U. De, Modifications of polymers by additives and irradiations and their characterizations, J Polym. Engg. 31 (2011) 299–307.

Google Scholar

[182] S. Tarafdar, T. Middya, R. Banerjee, D. Sanyal, D. Banerjee, K.C. Verma, U. De, Positron annihilation and ion-conductivity studies of PEO–NH4- ClO4 complexes, Solid State Ionics 152 – 153 (2002) 235 – 239.

DOI: 10.1016/s0167-2738(02)00304-1

Google Scholar

[183] G. Dlubek, U. De, J. Pionteck, N. Y. Arutyunov, M. Edelmann, R. Krause-Rehberg, Temperature Dependence of Free Volume in Pure and Silica‐Filled Poly (dimethyl siloxane) from Positron Lifetime and PVT Experiments, Macromol. Chem. Phys. 206 (2005) 827-840.

DOI: 10.1002/macp.200400546

Google Scholar

[184] Udayan De & D. Sanyal, "Chap. V : Probing HTSC by Positron Lifetime and Doppler Broadening Investigations" in: Anant Narlikar (ed.), Studies of High Temperature Superconductors – Advances in Research and Applications, Vol. 29, Nova Science Publishers Inc., NY, 1999.

Google Scholar

[185] Positron Solid State Physics, W. Brandt and A. Dupasquire (eds.), North-Holland, Amsterdam, 1983.

Google Scholar

[186] R. Kumar, R. Prasad, Study of ion induced modification in Makrofol-KG polycarbonate by positron annihilation lifetime measurements, Ind. J. Pure Appl. Phys. 44 (2006) 9-12.

Google Scholar

[187] R. Kumar, R. Prasad, Ion induced modification in free volume in PN-6 and PES polymers by positron annihilation lifetime studies, Nucl. Instrum. Meth. B 256 (2007) 238–242.

DOI: 10.1016/j.nimb.2006.12.067

Google Scholar

[188] R. Kumar, S.A. Ali, U. De, A.H. Naqvi, S.K. Chaudhary, D. Das, R. Prasad, Studies of the o-Ps lifetime and free volume in ion irradiated Makrofol-KG polycarbonate by positron annihilation, Radiat. Meas. 43 (2008) S578–S582.

DOI: 10.1016/j.radmeas.2008.04.059

Google Scholar

[189] R. Kumar, R. Prasad, 70 MeV Carbon C5+ ion induced modification in polystyrene by positron annihilation, Radiat. Meas. 40 (2005) 750-753.

DOI: 10.1016/j.radmeas.2005.06.027

Google Scholar

[190] R. Kumar, S.A. Ali, A.K. Mahur, D. Das, A.H. Naqvi, H.S. Virk, R. Prasad, Free volume study of 70 MeV carbon induced modification in polymers through positron annihilation, Nucl. Instrum. Meth. B 244 (2006) 257–260.

DOI: 10.1016/j.nimb.2005.11.135

Google Scholar

[191] G. Dlubek, F. Borner, R. Buchhold, K. Sahre, R. Krause-Rehberg, K.-J. Eichhorn, Damage-Depth Profiling of Ion-Irradiated Polyimide Films with a Variable-Energy Positron Beam, J. Polym. Sci.: Part B: Polym. Phys. 38 (2000) 3062–3069.

DOI: 10.1002/1099-0488(20001201)38:23<3062::aid-polb80>3.0.co;2-i

Google Scholar

[192] Y. Kobayashi, I. Kojima, S. Hishita, T. Suzuki, E. Asari, M. Kitajima, Damage-depth profiling of an ion-irradiated polymer by monoenergetic positron beams, Phys. Rev. B 52 (1995) 823-828.

DOI: 10.1103/physrevb.52.823

Google Scholar

[193] K. Hirata, Y. Kobayashi, S. Hishita, Y. Ujihira, Damage depth-profiling of Au+ and O+-irradiated amorphous PEEK by monoenergetic positron beams, Appl. Phys. A 64 (1997) 491-495.

DOI: 10.1007/s003390050507

Google Scholar

[194] I.Y. Al-Qaradawi, N.K. Madi, A. Turos, A.M. Abdul-Kader, Positron annihilation and ion beam analysis of ion-bombardment-induced hydrogen release and oxidation of ultra high molecular weight polyethylene, Radiat. Phys. Chem. 76 (2007) 123–128.

DOI: 10.1016/j.radphyschem.2006.03.016

Google Scholar

[195] G. Shariff, P. M. Sathyanarayana, M. C. Thimmegowda, M. B. Ashalatha, R. Ramani, D. K. Avasthi, C. Ranganathaiah, Influence pf ion-irradiation on the free volume controlled diffusion process in polycarbonate-a positron lifetime study, Polymer 43 (2002) 2819-2826.

DOI: 10.1016/s0032-3861(02)00088-5

Google Scholar

[196] E. N. Kaufmann, Characterization of Materials, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

Google Scholar

[197] A.L. Evelyn, D. Ila, R.L. Zimmerman, K. Bhat, D.B. Poker, D.K. Hensley, C. Klatt, S. Kalbitzer, N. Just, C. Drevet, Ion beam modification of PES, PS and PVC polymers, Nucl. Instrum. Meth. B 148 (1999) 1141-1145.

DOI: 10.1016/s0168-583x(98)00858-1

Google Scholar

[198] S. Capaccioli, M. Lucchesi, P. A. Rolla, G. Ruggeri, Dielectric response analysis of a conducting polymer dominated by the hopping charge transport, J. Phys.: Condens. Matter 10 (1998) 5595-5617.

DOI: 10.1088/0953-8984/10/25/011

Google Scholar

[199] G. M. Tsangaris, G. C. Psarras, N. Kouloumbi, Electric modulus and interfacial polarization in composite polymeric systems, J. Mater. Sci. 33 (1998) 2027-2037.

DOI: 10.1023/a:1004398514901

Google Scholar

[200] N.L. Singh, Anjum Qureshi, F. Singh, D.K. Avasthi, Effect of swift heavy ion irradiation on dielectrics properties of polymer composite films, Materials Sci. Engg. B 137 (2007) 85–92.

DOI: 10.1016/j.mseb.2006.10.013

Google Scholar

[201] A. Qureshi, N.L. Singh, A.K. Rakshit, F. Singh, D.K. Avasthi, Swift heavy ion induced modification in polyimide films, Surf. Coatings Technol. 201 (2007) 8308–8311.

DOI: 10.1016/j.surfcoat.2006.10.055

Google Scholar

[202] N.L. Singh, S. Shah, A. Qureshi, F. Singh, D.K. Avasthi, V. Ganesan, Swift heavy ion induced modification in dielectric and microhardness properties of polymer composites, Polym. Degrad. Stab. 93 (2008) 1088–1093.

DOI: 10.1016/j.polymdegradstab.2008.03.015

Google Scholar

[203] N. L. Singh, S. Shah, A. Qureshi, A. Tripathi, F. Singh, D. K. Avasthi, P. M. Raole, Effect of ion beam irradiation on metal particle doped polymer composites, Bull. Mater. Sci. 34 (2011) 81–88.

DOI: 10.1007/s12034-011-0040-5

Google Scholar

[204] L. Calcagno, P. Musumeci, R. Percolla, G. Foti, Calorimetric measurements of MeV ion irradiated polyvinylidene fluoride, Nucl. Instrum. Meth. B 91(1994) 461-464.

DOI: 10.1016/0168-583x(94)96269-3

Google Scholar

[205] Minakshi Maitra, Krishan Ch. Verma, Mrinal Sinha, Rajesh Kumar, T.R. Middya, S. Tarafdar, P. Sen, S.K. Bandyopadhyay and Udayan De, Nucl. Instrum. Meth. B 244 (2006) 239.

Google Scholar

[206] Udayan De, Characterizations of Adanced Materials and some new applications, J. Asiat. Soc. Bangladesh Sci. 37 (2011) 479-501.

Google Scholar

[207] V. K. Mittal, S. Lotha and D. K. Avasthi, Hydrogen loss under heavy ion irradiation in polymers, Radiat. Eff. Defects Solids 147 (1999) 199-209.

DOI: 10.1080/10420159908229009

Google Scholar

[208] D. K. Avasthi, G. K. Mehta. "Ion Beams for Materials Engineering—An Overview." In: Swift Heavy Ions for Materials Engineering and Nanostructuring, Springer, Netherlands, 2011, pp.1-46.

DOI: 10.1007/978-94-007-1229-4_1

Google Scholar

[209] D. K. Avasthi, J. P. Singh, A. Biswas, S. K. Bose, Study on evolution of gases from Mylar under ion irradiation, Nucl. Instrum. Meth. B 146 (1998) 504-508.

DOI: 10.1016/s0168-583x(98)00464-9

Google Scholar

[210] S. J. Toal, W. C. Trogler, Polymer sensors for nitroaromatic explosives detection, J. Mater. Chem. 16 (2006) 2871-2883.

DOI: 10.1039/b517953j

Google Scholar

[211] Y. Osada, D. E. De Rossi, Polymer sensors and actuators, Springer, Germany, 2000.

Google Scholar

[212] H. Bai, Gaoquan Shi, Gas sensors based on conducting polymers, Sensors 7 (2007) 267-307.

DOI: 10.3390/s7030267

Google Scholar

[213] A. C. Partridge, M. L. Jansen, W. M. Arnold, Conducting polymer-based sensors, Mater. Sci. Engg. C 12 (2000) 37-42.

Google Scholar

[214] S.B. Kadam, K. Datta, P. Ghosh, A.B. Kadam, P.W. Khirade, V. Kumar, R.G. Sonkawade, A.B. Gambhire, M.K. Lande, M.D. Shirsat, Improvement of ammonia sensing properties of poly(pyrrole)–poly (n-methylpyrrole) composite by ion irradiation, Appl. Phys. A 100 (2010) 1083–1088.

DOI: 10.1007/s00339-010-5705-1

Google Scholar

[215] S. Srivastava, S. Kumar, Y.K. Vijay, Preparation and characterization of tantalum/polyaniline composite based chemiresistor type sensor for hydrogen gas sensing application, Int. J. Hydrogen Energy 37 (2012) 3825-3832.

DOI: 10.1016/j.ijhydene.2011.04.155

Google Scholar

[216] P. Ghosh, K Datta, A Mulchandani, R. G. Sonkawade, K. Asokan, M. D. Shirsat, A chemiresistive sensor based on conducting polymer/SWNT composite nanofibrillar matrix-effect of 100 MeV O16 ion irradiation on gas sensing properties, Smart Mater. Struct. 22 (2013) 035004 (8pp).

DOI: 10.1088/0964-1726/22/3/035004

Google Scholar

[217] A.M.P. Hussain, A. Kumar, Enhanced electrochemical stability of all-polymer redox supercapacitors with modified polypyrrole electrodes, J. Power Sources 161 (2006) 1486–1492.

DOI: 10.1016/j.jpowsour.2006.05.051

Google Scholar

[218] A.M.P. Hussain, D. Saikia, F. Singh, D.K. Avasthi, A. Kumar, Effects of 160 MeV Ni12+ ion irradiation on polypyrrole conducting polymer electrode materials for all polymer redox supercapacitor, Nucl. Instrum. Meth. B 240 (2005) 834–841.

DOI: 10.1016/j.nimb.2005.06.204

Google Scholar

[219] J. Jagielski, A. Turos, D. Bielinski, A.M. Abdul-Kader, A. Piatkowska, Ion-beam modified polymers for biomedical applications, Nucl. Instrum. Meth. B 261 (2007) 690–693.

DOI: 10.1016/j.nimb.2007.03.021

Google Scholar

[220] P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, Plasma-surface modification of biomaterials, Mater. Sci. Engg. R: Reports 36 (2002) 143-206.

Google Scholar

[221] D. M. Bieliński, D. Tranchida, P. Lipiński, J. Jagielski, A. Turos, Ion bombardment of polyethylene-influence of polymer structure, Vacuum 81 (2007) 1256-1260.

DOI: 10.1016/j.vacuum.2007.01.020

Google Scholar

[222] J. M. Rosiak, P. Ulanski, L. A. Pajewski, F. Yoshii, K. Makuuchi, Radiation formation of hydrogels for biomedical purposes. Some remarks and comments, Radiat. Phys. Chem. 46 (1995) 161-168.

DOI: 10.1016/0969-806x(95)00007-k

Google Scholar

[223] C. Satriano, E. Conte, and G. Marletta, Surface chemical structure and cell adhesion onto ion beam modified polysiloxane, Langmuir 17 (2001) 2243-2250.

DOI: 10.1021/la001321r

Google Scholar

[224] Y. Suzuki, Ion beam modification of polymers for the application of medical devices, Nucl. Instrum. Meth. B 206 (2003) 501–506.

Google Scholar

[225] H. Tsuji, M. Izukawa, R. Ikeguchi, R. Kakinoki, H. Sato, Y. Gotoh, J. Ishikawa, Improvement of polydimethylsiloxane guide tube for nerve regeneration treatment by carbon negative-ion implantation, Nucl. Instrum. Meth. B 206 (2003) 507–511.

DOI: 10.1016/s0168-583x(03)00809-7

Google Scholar

[226] M. Manso, A. Valsesia, M. Lejeune, D. Gilliland, G. Ceccone, F. Rossi, Tailoring surface properties of biomedical polymers by implantation of Ar and He ions, Acta Biomaterialia 1 (2005) 431–440.

DOI: 10.1016/j.actbio.2005.03.003

Google Scholar

[227] C. Satriano, C. Scifo, G. Marletta, Study of albumin adsorption on ion beam irradiated polymer surfaces, Nucl. Instrum. Meth. B 166-167 (2000) 782-787.

DOI: 10.1016/s0168-583x(99)00865-4

Google Scholar

[228] Lucie Bacakova, V. Mares, M. G. Bottone, C. Pellicciari, V. Lisa, V. Svorcık, Fluorine ion-implanted polystyrene improves growth and viability of vascular smooth muscle cells in culture, Journal of biomedical materials research, 49 (2000) 369-379.

DOI: 10.1002/(sici)1097-4636(20000305)49:3<369::aid-jbm10>3.0.co;2-w

Google Scholar

[229] N. Betz, J. Begue, M. Goncalves, K. Gionnet, G. Deleris, A. L. Moel, Functionalisation of PAA radiation grafted PVDF, Nucl. Instrum. Meth. B 208 (2003) 434–441.

DOI: 10.1016/s0168-583x(03)00900-5

Google Scholar

[230] A. Bhattacharya, B.N. Misra, Grafting: a versatile means to modify polymers Techniques, factors and applications, Prog. Polym. Sci. 29 (2004) 767–814.

DOI: 10.1016/j.progpolymsci.2004.05.002

Google Scholar

[231] http://www.igcar.ernet.in/gap_web/1.htm

Google Scholar

[232] J. W. Born, Nuclear radiation resistant polymers and polymeric compounds. No. AD-276227. Goodrich (BF) Co., Brecksville, OH (USA), 1962.

Google Scholar

[233] T. Zaharescu, S. Jipa, A. Mantsch, I. Borbath, T. Borbath, Qualification of ethylene-propylene elastomers for nuclear applications, J. of Advanced Research in Physics 1 (2010) 011012.

Google Scholar

[234] R. O. Bolt, J. G. Carooll, R. Harrington, R. C. Giberson. Organic Lubricants and Polymers for Nuclear Power Plants. No. A/CONF. 15/P/2384. California Research Corp., Richmond, General Electric Co., Richland, Wash., 1958.

Google Scholar

[235] R. A. Pethrick, in: D. W. Clegg, A. A. Collyer (Eds.), Irradiation Effects on Polymers, Elsevier, New York, 1991, p.383.

Google Scholar

[236] S.V. Springham, T. Osipowicz, J.L. Sanchez, L.H. Gan, F. Watt, Micromachining using deep ion beam lithography, Nucl. Instrum. Meth. B 130 (1997) 155-159.

DOI: 10.1016/s0168-583x(97)00275-9

Google Scholar

[237] L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain et al., Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett. 65 (1994) 2484.

DOI: 10.1063/1.112672

Google Scholar

[238] M. Skupinski, M. Toulemonde, M. Lindeberg, K. Hjort, Ion tracks developed in polyimide resist on Si wafers as template for nanowires, Nucl. Instrum. Meth. B 240 (2005) 681-689.

DOI: 10.1016/j.nimb.2005.04.128

Google Scholar

[239] J Liu, J L Duan, M E Toimil-Molares, S Karim, T W Cornelius, D Dobrev, H J Yao, YMSun, M D Hou, D Mo, Z G Wang, R Neumann, Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: the influence of deposition parameters." Nanotechnology 17 (2006) 1922.

DOI: 10.1088/0957-4484/17/8/020

Google Scholar

[240] MET Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes, Adv. Mater. 13 (2001) 62-65.

DOI: 10.1002/1521-4095(200101)13:1<62::aid-adma62>3.0.co;2-7

Google Scholar

[241] J. Vetter, R. Spohr, Application of ion track membranes for preparation of metallic microstructures, Nucl. Instrum. Meth. B 79 (1993) 691-694.

Google Scholar

[242] L. Piraux, S. Dubois, E. Ferain, R. Legras, K. Ounadjela, J. M. George, J. L. Maurice, A. Fert, Anisotropic transport and magnetic properties of arrays of sub-micron wires, J. Magnetism and Magnetic Materials 165 (1997) 352-355.

DOI: 10.1016/s0304-8853(96)00553-7

Google Scholar

[243] H. G. Gehrkewe, A. K. Nix, H. Hofsass, J. Krauser, C. Trautmann, A. Weidinger, Self-aligned nanostructures created by swift heavy ion irradiation, J. Appl. Phys. 107 (2010) 094305-094305.

DOI: 10.1063/1.3354093

Google Scholar