Ion Beam Induced Modifications in Conducting Polymers

Article Preview

Abstract:

High energy ion beam induced modifications in polymeric materials is of great interest from the point of view of characterization and development of various structures and filters. Due to potential use of conducting polymers in light weight rechargeable batteries, magnetic storage media, optical computers, molecular electronics, biological and thermal sensors, the impact of swift heavy ions for the changes in electrical, structural and optical properties of polymers is desirable. The high energy ion beam irradiation of polymer is a sensitive technique to enhance its electrical conductivity, structural, mechanical and optical properties. Recent progress in the radiation effects of ion beams on conducting polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on conductive polymers is described. The electrical, structural and optical properties of irradiated films were analyzed using V-I, X-Ray diffraction (XRD), scanning electron microscopy (SEM), UV-Visible spectroscopy and Fourier transform infrared spectroscopy methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-105

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Shirakawa, T. Ito, S. Ikeda, Simultaneous Polymerization and Formation of Polyacetylene Film on the Surface of Concentrated Soluble Ziegler-Type Catalyst Solution, J. Polym. Sci. Chem. 12 (1974) 11-20.

DOI: 10.1002/pol.1974.170120102

Google Scholar

[2] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x., J. Chem. Commun. 16 (1977) 578-580.

DOI: 10.1039/c39770000578

Google Scholar

[3] C.K. Chiang, C.R.Jr. Fincher, Y.W. Park, A,J, Heeger, H.E. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett. 39 (1977) 1098 – 1101.

DOI: 10.1103/physrevlett.39.1098

Google Scholar

[4] A.J. Heeger, Nobel Lecture: Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials, Rev. Mod. Phys. 73 (2001) 681–700.

DOI: 10.1103/revmodphys.73.681

Google Scholar

[5] W.A. Little, Possibility of Synthesizing an Organic Superconductor, Phys. Rev. 134A (1964) 1416-1424.

Google Scholar

[6] M. Hatano, S. Kambara, S. Dkamoto, Paramagnetic and Electric Properties of Polyacetylene, J. Polym. Sci. 51 (1961) S26-S29.

DOI: 10.1002/pol.1961.1205115623

Google Scholar

[7] A.F. Diaz, K.K. Kanazawa, Polypyrrole: An Electrochemical Approach to Conducting Polymers. In: Extended Linear Chain Compounds (Ed. J.S. Miller). Vol 3, (1982) Plenum Publishing Corporation, Plenum Press, New York, pp.417-441.

DOI: 10.1007/978-1-4684-4175-8_8

Google Scholar

[8] G. Tourillon, F. Garnier, New Electrochemically Generated Organic Conducting Polymers. Jr. Electroanal. Chem. 135 (1982) 173-178.

DOI: 10.1016/0022-0728(82)90015-8

Google Scholar

[9] D.M. Ivory, G.G. Miller, J.M. Sowa, L.W. Shacklette, R.R. Chance, R.H. Baughman, Highly Conducting Charge-Transfer Complexes of Poly (p-phenylene), J. Chem. Phys, 71 (1979) 1506-1507.

DOI: 10.1063/1.438420

Google Scholar

[10] J.F. Rabolt, T.C. Clarke, K.K. Kanazawa, J.R. Reynolds, G.B. Street, Organic Metals: Poly-(p-Phenylene Sulphide) Hexafluoroarsenate, J. Chem. Soc., Chem. Commun, Issue 5 (1980), 347.

DOI: 10.1039/c39800000347

Google Scholar

[11] F. Diaz, J.A. Logan, Electroactive Polyaniline Films, J. Electroanal. Chem. 111 (1980) 111-114.

Google Scholar

[12] J.D. Capistran, D.R. Gagnon, S. Antoun, R.W. Lenz, F.E. Karasz, Synthesis and Electrical Conductivity of High Molecular Weight Poly(arylene Vinylenes) ACS, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 25 (1984) 282-283.

DOI: 10.1016/0032-3861(87)90471-x

Google Scholar

[13] Handbook of Conducting Polymers, 2nd Edition (Skotheim, T.A., Elsenbaumer, R. L., Reynolds, J. R. Eds.) Marcel Dekker, New York (1998).

Google Scholar

[14] Organic Conductive Molecules and Polymers, Nalwa, H. S., Ed.; John Wiley & Sons: Chichester (1997).

Google Scholar

[15] P. Bäuerle, Intrinsically Conducting Polymers, Adv. Mater. 5 (1993) 879-886.

Google Scholar

[16] S.J. Higgins, Conjugated Polymers Incorporating Pendant Functional Groups-Synthesis and Characterisation, Chem. Soc. Rev. 26 (1997) 247-258.

DOI: 10.1039/cs9972600247

Google Scholar

[17] J. Roncali, Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems, Chem. Rev. 97 (1997) 173-206.

DOI: 10.1021/cr950257t

Google Scholar

[18] J.L. Bredas, R. Silbey, Conjugated Polymers, Kluwer Dordrecht, (1991) 1-618.

Google Scholar

[19] W.R. Salaneck, S. Stafstrom, J.L. Bredas, Conjugated Polymer Surfaces and Interfaces, Chapter 4, Cambridge University Press (1996).

Google Scholar

[20] R.C. Ramola S. Chandra, J.M.S. Rana, R. Sharma, S. Annapoorni, R.G. Sonkawade, F. Singh, D.K. Avasthi, Swift Heavy Ions Induced Modifications in Structural and Electrical Properties of Polyaniline, Current Science 97 (2009) 1453-1458.

Google Scholar

[21] R.C. Ramola, S.Chandra, J.M.S. Rana, R.G. Sonkawade, P.K. Kulriya, F. Singh, D.K. Avasthi, S. Annapoorni, A Comparative Study of the Effect of O+7 Ion Beam on Polypyrrole and CR-39 (DOP) Polymers, J. Phys. D: Appl. Phys. 41 (2008) 115411 (6pp).

DOI: 10.1088/0022-3727/41/11/115411

Google Scholar

[22] H. Studer, D. Pascard, Ch. Houpert Groult, N. Nguyen, M. Toulemonde, Magnetic Properties of Spinel Oxides After High Electronic Excitation Induced by Xenon Ions, Nucl. Instrum. Meth. B32 (1988), 389.

DOI: 10.1016/0168-583x(88)90242-x

Google Scholar

[23] J.F. Ziegler, SRIM-2003, Nucl. Instrum. Methods B 219 (2004) 1027–1036.

Google Scholar

[24] L.E. Alexander, X-ray Diffraction Methods in Polymer Science, John Wiley, New York, (1969) 582 p.

Google Scholar

[25] L.F. Warren, J.A. Walker, D.P. Anderson, C.G. Rhodes, L.J. Buckley, DNA Binding to Electropolymerized Polypyrrole: the Dependence on Film Characteristics. J. Electrochem. Soc., 136 (1989) 2286-2295.

Google Scholar

[26] A.M.P. Hussain, A. Kumar, F. Singh, D.K. Avasthi, Effects of 160 MeV Ni12+ Ion Irradiation on HCl Doped Polyaniline Electrode. J. Phys. D: Appl. Phys. 39 (2006) 750–755.

DOI: 10.1088/0022-3727/39/4/023

Google Scholar

[27] S. Bruno, Ed. Applications of Electroactive Polymers (London: Chapman and Hall) (1993).

Google Scholar

[28] P. Gott Scherrer, Nachar 2 (1988) 98.

Google Scholar

[29] K. Cheah, M. Forsyth, V.T. Truong, Ordering and Stability in Conducting Polypyrrole, Synth. Metals 94 (1998) 215-219.

DOI: 10.1016/s0379-6779(98)00006-x

Google Scholar

[30] P. Lemon, J. Haigh, The Evolution of Nodular Polypyrrole Morphology During Aqueous Electrolytic Deposition: Influence of Electrolyte Gas Discharge, Mat. Research Bull. 34 (1999) 665-672.

DOI: 10.1016/s0025-5408(99)00069-0

Google Scholar

[31] C.J. Price, J. Phys. Chem. 97 (1993) 231.

Google Scholar

[32] J. Chen, C.O. Too, G.G. Wallace, G.F. Swierers, Redox-active Conducting Polymers Incorporating Ferrocenes: 2. Preparation and Characterisation of Polypyrroles Containing Propyl- and Butyl-Tethered [1.1] Ferrocenophane, Electrochim Acta 49 (2004) 691-702.

DOI: 10.1016/j.electacta.2003.08.031

Google Scholar

[33] J. Tauc, Optical Properties of Solids, ed A Ables (Amsterdam: North- Holland) (1970).

Google Scholar

[34] E.A. Davis, N.F. Mott, Conduction in Non-Crystalline Systems V. Conductivity, Optical Absorption and Photoconductivity in Amorphous Semiconductors, Phil. Mag. 22 (1970) 903-922.

DOI: 10.1080/14786437008221061

Google Scholar

[35] J.I. Pankov, Optical Process in Semicondutors (Englewood Cliffs, NJ: Prentice- Hall) (1971).

Google Scholar

[36] A.B.M. Shah Jalal, S. Ahamed, A.H. Bhuiyan, M. Ibrahim, UV-Vis Absorption Spectroscopic Studies of Plasma-Polymerized m-Xylene Thin Films, Thin Solid Films 288 (1996) 108-111.

DOI: 10.1016/s0040-6090(96)08843-8

Google Scholar

[37] D. Fink, R. Klett, L.T. Chadderton, J. Cardoso, R. Montiel, M.H. Vazquez, A. Karanovich, Carbonaceous Clusters in Irradiated Polymers as Revealed by Small Angle X-Ray Scattering and ESR, Nucl. Instru. Meth. B 111 (1996), 303-314.

DOI: 10.1016/0168-583x(95)01433-0

Google Scholar

[38] J.H. Kaufman, K.K. Kanazawa, J.B. Street, Gravimetric Electrochemical Voltage Spectroscopy: In Situ Mass Measurements during Electrochemical Doping of the Conducting Polymer Polypyrrole, Phys. Rev. Lett. 53 (1984) 2461-2464.

DOI: 10.1103/physrevlett.53.2461

Google Scholar

[39] W.J. Albery, Z. Chen, B.R. Horrocks, Faraday Discuss, Chem. Soc. 88 (1989) 2473-2478.

Google Scholar

[40] M.E. Jozefowicz, R. Laversanne, H.H.S. Javadi, A.J. Epstein, J.P. Pouget, X. Tang, A.G. Macdiarmid, Multiple Lattice Phases and Polaron-Lattice-Spinless-Defect Competition in Polyaniline, Phys. Rev B 39 (1989) 12958-12961.

DOI: 10.1103/physrevb.39.12958

Google Scholar

[41] E.H. Lee, Ion-Beam Modification of Polymeric Materials – Fundamental Principles and Applications, Nucl. Instrum. Methods in Phys. Res. B151 (1990) 29-41.

Google Scholar

[42] G.B. Street, S.E. Lindsey, A.I. Nazzai, The Structure and Mechanical Properties of Polypyrrole, Mol. Cryst. Liq. Cryst. 118 (1985) 137-148.

Google Scholar

[43] A. Kassim, Z.B. Basar, N.H.M.E. Mahmud, Synthesis of Polypyrrole Films for the Development of Ammonia Sensor, Proc. Indian Acad. Sci. (Chem. Sci.) 114 (2002) 155-162.

Google Scholar

[44] N.F. Mott, Conduction in Non Crystalline Materials III. Localized State in Pseudogap and Near Extremities of Conduction and Valence Bands, Phil. Mag. 19 (1969), 835-851.

DOI: 10.1080/14786436908216338

Google Scholar

[45] P. Sheng, B. Abeles, Y. Arie, Hopping Conductivity in Granular Metals, Phys. Rev. Lett. 31 (1973) 44-47.

DOI: 10.1103/physrevlett.31.44

Google Scholar

[46] R.C. Ramola, A. Abdullah, S. Chandra, S. Annapoorni, J.M.S. Rana, R.G. Sonkawade, F. Singh, D.K. Avasthi, Effects of Swift Heavy Ions Irradiation on Polypyrrole Thin Films, Radiation Effects and Defects in Solids 163 (2008) 139-147.

DOI: 10.1080/10420150701639985

Google Scholar

[47] J.L. Bredas, B. Themans, J.M. Andre, R.R. Chance, R. Silbey, The Role of Mobile Organic Radicals and Ions (Solitons, Polarons and Bipolarons) in the Transport Properties of Doped Conjugated Polymers, Synthetic Metals 9 (1984) 265-274.

DOI: 10.1016/0379-6779(84)90064-x

Google Scholar

[48] A.L. Schemid, L.M. Lira, S.I.C. De Torresi, The Electrochemical and Spectroscopic properties of a Soluble Polyaniline Parent Copolymer, Electrochimica Acta 47 (2002), 2005-2011.

DOI: 10.1016/s0013-4686(02)00026-9

Google Scholar

[49] J.L. Koenig, Spectroscopy of Polymers (Amsterdam: Elsevier) 2nd ed. Poly. Degradation and Stability 73 (1999) 567-569.

Google Scholar

[50] L.P. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, 3rd ed.; Harcourt College Publishers: Fort Worth, TX, 2001.

Google Scholar