Spectroscopic Investigations of Radiation Damage in Glasses Used for Immobilization of Radioactive Waste

Article Preview

Abstract:

Borosilicate based glass formulations have been found suitable for vitrification of high level nuclear waste (HLW) generated during the reprocessing of spent nuclear fuel from nuclear reactors. These glasses possess desirable properties like high chemical, mechanical, thermal and radiation stability for HLW storage. Also, the amorphous nature of the glass helps accommodate the waste containing a variety of elements easily. Because of the presence of the radioactive components, such as, fission /activation products and minor actinides present in the waste, the glass containment experiences radiation damage that can significantly alter the glass structure which may influence their long term leaching behavior. Spectroscopic techniques provide direct and non-invasive method for investigating this radiation damage in the glasses. The present paper gives a glimpse of the current status and issues regarding the investigation of radiation damage in the glass matrices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-128

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Safety Code on Establishing Radioactive Waste Management System, Atomic Energy Regulatory Board Report, Department of Atomic Energy, Mumbai, India, 2003.

Google Scholar

[2] K. Raj, K.K. Prasad, N.K. Bansal, Radioactive waste management practices in India, Nucl. Engg. Design 236 (2006) 914-930.

DOI: 10.1016/j.nucengdes.2005.09.036

Google Scholar

[3] Closing the Circle on the Splitting of the Atom, U.S. Departmentof Energy, Office of Environmental Management, Washington DC, USA, 1995.

Google Scholar

[4] Management and Disposition of Excess Weapons Plutonium, National Academy Press, Washington DC, USA, 1994.

Google Scholar

[5] Management and Disposition of Excess Weapons Plutonium– Reactor-Related Options, National Academy Press, Washington DC, USA, 1995.

DOI: 10.17226/4754

Google Scholar

[6] A. Kakodkar, Indian Nuclear Power Programme- Materials Challenges, Department of Atomic Energy, Mumbai, India, 2007.

Google Scholar

[7] M.I. Ojovan, W.E. Lee, An Introduction to Nuclear Waste Immobilization, Elsevier Science Publishers B.V, Amsterdam, The Netherlands, 2005.

Google Scholar

[8] M.I. Ojovan, W.E. Lee, Glassy Wasteforms for Nuclear Waste Immobilization, Metal. Mater. Trans. A, 42 (2011) 837-851.

DOI: 10.1007/s11661-010-0525-7

Google Scholar

[9] C. M. Jantzen, K. G. Brown, J. B. Pickett, Durable Glass for Thousands of Years, Int. J. App. Glass Sci. 1 (2010) 38–62.

DOI: 10.1111/j.2041-1294.2010.00007.x

Google Scholar

[10] G.H. Beall, L.R. Pinckney, Nanophase glass ceramics, J. Am. Ceram. Soc. 82 (1999) 5-16.

Google Scholar

[11] G.H. Beall, D.A. Duke, Glass–Ceramic Technology, Glass: Science and Technology, vol. 1, Academic Press Inc., San Diego, USA, 1983, p.403.

Google Scholar

[12] I.W. Donald, B.L. Metcalfe, R.N.J. Taylor, The immobilization of high level radioactive waste using ceramics and glasses, J. Mater. Sci., 1997, vol. 32, p.5851–5887.

Google Scholar

[13] A.R. Boccaccini, E. Bernardo, L. Blain, and D.N. Boccaccini, Borosilicate and lead silicate glass matrix composites containing pyrochlore phases for nuclear waste encapsulation, J. Nucl. Mater. 327 (2004) 148–158.

DOI: 10.1016/j.jnucmat.2004.01.019

Google Scholar

[14] D.M. Roy, W. Fajun, M.W. Grutzeck, Nuclear Waste Management, in: G.G. Wicks, W.A. Ross (Eds.), Advances in Ceramics, American Ceramic Society Vol. 8, Chicago, USA 1983.

Google Scholar

[15] G. J. McCarthy, High level waste ceramics: materials considerations, process simulation, and product characterization, Nucl. Technol. 32 (1977) 92-104.

DOI: 10.13182/nt77-a31741

Google Scholar

[16] M.I. Ojovan, O.K. Karlina, Synthesis and properties of glass composite materials for solidification of radioactive waste, Radiochemistry 33(1992) 97-100.

Google Scholar

[17] M. J. Plodinec, Borosilicate glasses for nuclear waste immobilization,Glass Tech.41 (2000) 186–192.

Google Scholar

[18] W.H. Zachariasen, The atomic arrangement in glass, J. Am. Chem. Soc. 54 (1932) 3841-3851.

DOI: 10.1021/ja01349a006

Google Scholar

[19] Vitrification Technologies for treatment of Hazardous and radioactive waste, EPA/625/R-92/002 Rev.00, Prepared for office of Research and Development, Washington, DC, USA,1992.

Google Scholar

[20] Spent Fuel and High Level Waste: Chemical Durability and Performance under Simulated Repository Conditions, Results of a Coordinated Research Project 1998–2004, IAEA-TECDOC-1563, International Atomic Energy Agency, Vienna, Austria, 2007.

Google Scholar

[21] S. Peuget, J.-N. Cachia, C. Je´gou, X. Deschanels, D. Roudil, V. Broudic, J.M. Delaye, J.-M. Bart, Irradiation stability of R7T7-type borosilicate glass, J.Nucl. Mater. 354 (2006) 1–13.

DOI: 10.1016/j.jnucmat.2006.01.021

Google Scholar

[22] P. Frugier, S. Gin, Y. Minet, T. Chave, B. Bonin, N. Godon, J.-E. Lartigue, P. Jollivet, A. Ayral, L. De Windt, G. Santarini, SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model, J. Nucl. Mater 380 (2008) 8–21.

DOI: 10.1016/j.jnucmat.2008.06.044

Google Scholar

[23] W.J. Weber, Radiation effects in nuclear waste glasses, Nucl. Instrum. Meth. B 32 (1988) 471-479.

Google Scholar

[24] J.A.C. Marples, Dose rate effects in radiation damage to vitrified radioactive waste, Nucl. Instrum. Meth. B 32 (1988) 480-486.

Google Scholar

[25] W.E. Lee, M.I. Ojovan, M.C. Stennett, N.C. Hyatt, Immobilization of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105 (2006) 3–12.

DOI: 10.1179/174367606x81669

Google Scholar

[26] W.E. Lee, J. Juoi, M.I. Ojovan, O.K. Karlina, Processing Ceramics for Radioactive Waste Immobilization, Adv. Sci. Tech. 45 (2006) 1986–1995.

Google Scholar

[27] M.I. Ojovan, W.E. Lee: New Developments in Glassy Nuclear Wasteforms, Nova Science Publishers, New York, USA, 2007.

Google Scholar

[28] V.S. Yalmali, D.S. Deshingkar, P.K. Wattal and S.R. Bharadwaj, Preparation and characterization of vitrified glass matrix for highlevel waste from MOX fuel processing, J. Non Cryst. Solids 353 (2007) 4647–4653.

DOI: 10.1016/j.jnoncrysol.2007.07.013

Google Scholar

[29] C.P. Kaushik, R.K. Mishra, P. Sengupta, A. Kumar, D. Das, G.B. Kale, K. Raj, Barium borosilicate glass–a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste, J. Nucl. Mater. 358 (2006) 129-138.

DOI: 10.1016/j.jnucmat.2006.07.004

Google Scholar

[30] W. J. Weber, A. Navrotsky, S. Stefanovsky, E. R. Vance, E. Vernaz, Materials Science of high level nuclear waste immobilization, MRS Bull. 34 (2009) 46-53.

DOI: 10.1557/mrs2009.12

Google Scholar

[31] W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobbs, A. Navrotsky, D.L. Price, A.M. Stoneham, M.C. Weinberg, Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition, J. Mater. Res. 12 (1997) 1946-1978.

DOI: 10.1557/jmr.1997.0266

Google Scholar

[32] W. J. Weber, L. K. Mansur, F. W. Clinard, Jr., D. M. Parkin, Radiation effects on materials in high radiation environment: A workshop summary, J. Nucl. Mater. 184 (1991) 1-21.

DOI: 10.1016/0022-3115(91)90527-e

Google Scholar

[33] W. J. Weber, F. P. Roberts, A review of radiation effects in solid nuclear waste forms, Nucl. Technol. 60 (1983) 178-198.

Google Scholar

[34] I. A. Shkrob , B. M. Tadjikov, A. D. Trifunac, Magnetic resonance studies on radiation-induced point defectsin mixed oxide glasses-I: Spin centres in B2O3 and alkali borate glasses, J. Non Cryst. Solids 262 (2000) 6-34.

DOI: 10.1016/s0022-3093(99)00668-7

Google Scholar

[35] D.L. Griscom, C.I. Merzbacher, R. A. Weeks, R. A. Zuhr, Electron spin resonance studies of defect centers induced in a high-level nuclear waste glass simulant by gammairradiation and ion-implantation, J. Non Cryst. Solids, 258(1999) 34–47.

DOI: 10.1016/s0022-3093(99)00557-8

Google Scholar

[36] E. Malchukova, B. Boizot, G. Petite, D. Ghaleb, Effect of Sm, Gd co-doping on structural modifications in alumina-borosilicate glasses under β-irradiation, J. Non Cryst. Solids 354 (2008) 3592-3596.

DOI: 10.1016/j.jnoncrysol.2008.03.018

Google Scholar

[37] B. Boizot, G. Petite, D. Ghaleb, N. Pellerin, F. Fayon, B. Reynard, G. Calas, Migration and segregation of sodium under β-irradiation in nuclear glasses, Nucl. Instrum. Meth. B 166/167 (2000) 500-504.

DOI: 10.1016/s0168-583x(99)00787-9

Google Scholar

[38] J. de Bonfils, S. Peuget, G. Panczer, D. de Ligny, S. Henry, P.Y. Noël, A. Chenet, B. Champagnon, Effect of chemical composition on borosilicate glass behavior under irradiation, J. Non Cryst. Solids 356 (2010) 388-393.

DOI: 10.1016/j.jnoncrysol.2009.11.030

Google Scholar

[39] S. Sato, F. Hirotaka, K. Asakura, K. Ohta, T. Tamai, Radiation effects of simulated waste glass irradiated with ion electron and γ rays, Nucl. Instrum. Meth. B l (1984) 534-537.

Google Scholar

[40] G. Möbus, M. Ojovan, S. Cook, J. Tsai, G. Yang, Nanoscale quasi melting of alkali borosilicate glasses under electron irradiation, J. Nucl. Mater.396 (2010) 264-271.

DOI: 10.1016/j.jnucmat.2009.11.020

Google Scholar

[41] J.M. Juoi, M.I. Ojovan, W.E. Lee, Microstructure and leaching durability of glass composite waste forms for spent clinoptilolite immobilization, J. Nucl. Mater. 372 (2008) 358-366.

DOI: 10.1016/j.jnucmat.2007.04.047

Google Scholar

[42] M. I. Ojovan, W. E. Lee, Alkali ion exchange in γ irradiated glasses, J. Nucl. Mater. 335 (2004) 425-432.

DOI: 10.1016/j.jnucmat.2004.07.050

Google Scholar

[43] F.H. El Batal, N. Nada, S.M. Desouky, M.M.I. Khalil, Absorption and infrared spectra of gamma irradiated ternary silicate glasses containing Co, Ind.J.Pure Appl.Phys.42 (2004) 711-721.

Google Scholar

[44] F.H. El Batal, A.A. El Kheshen, M.A. Azooz, S.M. Abo-Naf, Gamma ray interaction with lithium di-borate glasses containing transition metals ions, Opt. Mater. 30 (2008) 881-891.

DOI: 10.1016/j.optmat.2007.03.010

Google Scholar

[45] N. A. El-Alaily, F. M. Ezz-Eldin, H. A. El Batal, Durability of some gamma irradiated alkali borate glasses, Radiat. Phys. Chem. 44 (1994) 45-51.

DOI: 10.1016/0969-806x(94)90101-5

Google Scholar

[46] A K Sandhu, S Singh, O P Pandey, Gamma ray induced modifications ofquaternary silicate glasses, J. Phys. D: Appl. Phys. 41 (2008) 165402 (6 pages).

DOI: 10.1088/0022-3727/41/16/165402

Google Scholar

[47] M.M. Morsi, S. El-Konsol, M.A. Adawi, Effect of neutron and gamma irradiation on some properties of borate glasses, J. Non-Cryst. Solids 58 (1983) 187-199.

DOI: 10.1016/0022-3093(83)90023-6

Google Scholar

[48] S. Baccaro, N. Catallo, A. Cemmi, G. Sharma, Radiation damage of alkali borate glasses for application in safe nuclear waste disposal, Nucl. Instrum. Meth. B 269 (2011) 167-173.

DOI: 10.1016/j.nimb.2010.10.019

Google Scholar

[49] T. Tsuboi, Optical properties of Ce3+/Tb3+-co-doped borosilicate glass, Eur. Phys. J. Appl. Phys. 26 (2004) 95-101.

Google Scholar

[50] S. Baccaro, A. Cecilia, M. Montecchi, M. Nikl, P. Polato, Radiation damage of silicate glasses doped with Tb3+ and Eu3+, J. Non-Cryst. Solids 315 (2003) 271-275.

DOI: 10.1016/s0022-3093(02)01601-0

Google Scholar

[51] S. Baccaroa, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, R. Zannoni, Radiation damage induced by gamma irradiation on Ce3+ doped phosphate and silicate scintillating glasses, Nucl. Instrum. Meth. A 476 (2002) 785-789.

DOI: 10.1016/s0168-9002(01)01676-x

Google Scholar

[52] E. Malchukova, B. Boizot, D. Ghaleb, G. Petite, Optical properties of pristine and g-irradiated Sm doped borosilicate glass, Nucl. Instrum. Meth. A 537 (2005) 411–414.

DOI: 10.1016/j.nima.2004.08.054

Google Scholar

[53] O. J. McGann, P. A. Bingham, R. J. Hand, A. S. Gandy, M. Kavčič, M. Žitnik, K. Bučar, R. Edge, N. C. Hyatt, The effects of g-radiation on model vitreous wasteforms intended for the disposal of intermediate and high level radioactive wastes in the United Kingdom, J. Nucl. Mater. 429 (2012) 353-367.

DOI: 10.1016/j.jnucmat.2012.04.007

Google Scholar

[54] Hj. Matzke, Radiation damage in nuclear materials, Nucl. Instrum. Meth. B 65 (1992) 30-39.

Google Scholar

[55] G.W. Arnold, Radiation damage effects in nuclear waste glasses, Radiat. Eff. 74 (1983) 151-159.

DOI: 10.1080/00337578308218407

Google Scholar

[56] J. de Bonfils, S. Peuget, G. Panczer, D. de Ligny, S. Henry, P.Y. Noël, A. Chenet, B. Champagnon, Effect of chemical composition on borosilicate glass behaviour under irradiation, J. Non-Cryst.Solid356 (2010) 388-393.

DOI: 10.1016/j.jnoncrysol.2009.11.030

Google Scholar

[57] J. de Bonfils, G. Panczer, D. de Ligny, S. Peuget, B. Champagnon, Behaviour of simplified nuclear waste glasses under gold ions implantation: A microluminescence study, J. Nucl. Mater. 362 (2007) 480-484.

DOI: 10.1016/j.jnucmat.2007.01.101

Google Scholar

[58] A. Abbas, Y. Serruys, D. Ghaleb, J.M. Delaye, B. Boizot, B. Reynard, G. Calas, Evolution of nuclear glass structure under α-irradiation, Nucl. Instrum. Meth. B 166/167 (2000) 445-450.

DOI: 10.1016/s0168-583x(99)00695-3

Google Scholar

[59] J.M. Costantini, C. Trautmann, L. Thomé, J. Jagielski, F. Beuneu, Swift heavy ion induced swelling and damage in yttria stabilized zirconia, J. App. Phys. 101 (2007) 073501 (8 pages).

DOI: 10.1063/1.2714651

Google Scholar

[60] S. Peuget, J.N. Cachia, C. Je´gou, X. Deschanels, D. Roudil, V. Broudic, J.M. Delaye, J.M. Bart, Irradiation stability of R7T7-type borosilicate glass, J. Nucl. Mater. 354 (2006) 1-13.

DOI: 10.1016/j.jnucmat.2006.01.021

Google Scholar

[61] R.A.B. Devine, Macroscopic and microscopic effects of radiation in amorphous SiO2, Nucl. Instrum. Meth. B 91 (1994) 378-390.

Google Scholar

[62] A. Haddi, P. Trocellier, I. Draganic, F. Farges, S. Poissonnet, P. Bonnaillie, Ion irradiation behavior and chemical durability of simple borosilicate glasses, Nucl. Instrum. Meth. B 266 (2008) 3182-3185.

DOI: 10.1016/j.nimb.2008.03.222

Google Scholar

[63] Hj. Matzke, Radiation damage effects in nuclear materials, Nucl. Instrum. Meth. B 32 (1988) 455-470.

Google Scholar

[64] Hj. Matzke, G. Della Mea, J.C. Dran, G. Linker, B. Tiveron, Radiation damage in nuclear waste glasses following ion implantation at different temperatures, Nucl. Instrum. Meth. B 46 (1990) 253-260.

DOI: 10.1016/0168-583x(90)90708-3

Google Scholar

[65] G. W. Arnold, Ion implantation effects in alkali borosilicate glasses, Radiat. Eff.98 (1986) 55-61.

DOI: 10.1080/00337578608206097

Google Scholar

[66] P. Trocellier, A. Haddi, S. Poissonnet, P. Bonnaillie, Y. Serruys, Thorium and cerium chemical behavior in ion irradiated alkali borosilicate glasses, Nucl. Instrum. Meth. B 249 (2006) 145-149.

DOI: 10.1016/j.nimb.2006.03.101

Google Scholar

[67] H. Kudo, T. Akagawa, Y. Katsumura, Microfluoroscence spectroscopy and ESR study on ion beam irradiated glasses, Nucl. Instrum. Meth. B 245 (2006) 201-203.

Google Scholar

[68] S. Sato, H. Furuya, K. Asakura, K. Ohta, T. Tamai, Radiation effects of simulated waste glass irradiated with ion, electron and gamma rays, Nucl. Instrum. Meth. B l (1984) 534-537.

DOI: 10.1016/0168-583x(84)90121-6

Google Scholar

[69] T. Banba, S. Matsumoto, S. Muraoka, K. Yamada, M. Saito, H. Ishikawa, N. Sasaki, Effects of alpha decay on the properties of actual nuclear waste glass, MRS Proceeding 353 (1994) 1397-1420.

DOI: 10.1557/proc-353-1397

Google Scholar

[70] R. C. Ewing, W. J. Weber, and F. W. Clinard, Jr., Radiation effects in nuclear waste forms for high level radioactive waste, Prog. Nucl. Energy 29(1995)63-127.

DOI: 10.1016/0149-1970(94)00016-y

Google Scholar

[71] G. Malow, H. Andresen, Scientific Basis for Nuclear WasteManagement,Vol-1,Plenum Press, New York, USA, 1979, p.109.

Google Scholar

[72] M. Antonini, F. Lanza, A. Manara, Ceramics in Nuclear Waste Management, T. D. Chikalla, J. E. Mendel (Eds), CONF-790420, National Technical Information Service, Springfield, VA, USA 1979, p.289.

Google Scholar

[73] M.M. Morsi, S. El-Konsol, M.A. Adawi, Effect of neutron and gamma irradiation on some properties of borate glasses, J. Non-Cryst.Solid58 (1983) 187-199.

DOI: 10.1016/0022-3093(83)90023-6

Google Scholar

[74] L. Luneville, D. Simeone, D. Gosset, A new tool to compare neutron and ion irradiation in materials, Nucl. Instrum. Meth. B 250 (2006) 71–75.

DOI: 10.1016/j.nimb.2006.04.084

Google Scholar

[75] D.R. Cousens, S. Myhra, The effect of ionizing radiation on HLW glasses, J. Non-Cryst.Solid54 (1983) 345-365.

DOI: 10.1016/0022-3093(83)90075-3

Google Scholar

[76] D.R. Neuville, L. Cormier, B. Boizot, A. Flank,Structure of β irradiated glasses studied by X-ray absorption and Raman spectroscopies, J. Non-Cryst. Solids, 323 (2003) 207-214.

DOI: 10.1016/s0022-3093(03)00308-9

Google Scholar

[77] J. H. Schulman, W. D. Compton, Color centers in solids, MacMillan Co., New York, USA, 1962.

Google Scholar

[78] E. Lell, N. J. Kreid, J. R. Hensler, Progresses in Ceramic Science, Volume-4, in: J. Burke (Ed.) Pergamon Press, Oxford, UK, (1966)

Google Scholar

[79] M. Goldberg, P. L. Mattern, K. Lengweiler, P.W. Levy, Radiation induced coloring of Cherenkov counter glasses, Nucl. Instrum. Meth. 108 (I973) 119-123.

DOI: 10.1016/0029-554x(73)90644-7

Google Scholar

[80] M.M. Cannas, S. Agnello, F.M. Gelardi, R. Boscaino, A. N. Trukhin, P. Liblik, C. Lushchik, M.F. Kink, Y. Maksimovand R.A. Kink, Luminescence of gamma radiation induced defects in α-quartz, J. Phys. Condens. Matter 16(2004)7931-7940.

DOI: 10.1088/0953-8984/16/45/015

Google Scholar

[81] L. Vaccaro, M. Cannas, B. Boizot and A. Parlato, Radiation induced generation of non bridging oxygen holecentre in silica: intrinsic and extrinsic processes, J. Non-Cryst. Solid 353 (2007) 586-589.

DOI: 10.1016/j.jnoncrysol.2006.10.028

Google Scholar

[82] G. Blasse, Luminescence of inorganic solids: from isolated centers to concentrated systems, Prog. Solid St. Chem. 18(1988) 79-171.

DOI: 10.1016/0079-6786(88)90004-0

Google Scholar

[83] N. Kristianpoller, Luminescence centers in quartz, J. Lumin. 31 & 32(1984)299-301.

DOI: 10.1016/0022-2313(84)90279-5

Google Scholar

[84] L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, A. Parlato, Generation of oxygen deficient point defects in silica by gamma and beta irradiation, J. Non-Cryst. Solid 353 (2007) 581-585.

DOI: 10.1016/j.jnoncrysol.2006.10.027

Google Scholar

[85] M. Mohapatra, V.K. Manchanda, Characterization of borosilicate glass as host matrix for high level waste, IOP Conf. Series: Mater. Sci. Engg. 2 (2009) 012006 (5 pages).

DOI: 10.1088/1757-899x/2/1/012006

Google Scholar

[86] M. Cannas, L. Vaccaro, B. Boizot, Spectroscopic parameters related to non-ridging oxygen hole centers in amorphous SiO2, J. Non-Cryst. Solid 352 (2006) 203-208.

DOI: 10.1016/j.jnoncrysol.2005.12.001

Google Scholar

[87] W.A. Hollerman, S.M. Goedeke, R.J. Moore, L.A. Boatner, S.W. Allison, and R.S. Fontenot, Unusual fluorescence emission characteristics From Europium- Doped Lead Phosphate Glass Caused by 3 MeV Proton Irradiation, 2007 IEEE Nuclear Science Symposium Conference Record, 1368-1372.

DOI: 10.1109/nssmic.2007.4437255

Google Scholar

[88] M. Mohapatra, R.K. Mishra, C.P. Kaushik, S.V. Godbole, Photoluminescence investigations of rare earth (Eu and Gd) incorporated nuclear waste glass, Physica B 405 (2010) 4790–4795.

DOI: 10.1016/j.physb.2010.09.003

Google Scholar

[89] M. Mohapatra, R.M. Kadam, R.K. Mishra, C.P. Kaushik, B.S. Tomar and S.V. Godbole, Gamma radiation induced changes in nuclear waste glass containing Eu, Physica B406 (2011) 3980-3984.

DOI: 10.1016/j.physb.2011.07.043

Google Scholar

[90] R. Kaur, S. Singh, O. P. Pandey, FTIR structural investigation of gamma irradiated BaO–Na2O–B2O3–SiO2 glasses, Physica B 407 (2012) 4765–4769.

DOI: 10.1016/j.physb.2012.08.031

Google Scholar

[91] M. Mohapatra, R.M. Kadam, R.K. Mishra, D. Dutta, P.K. Pujari, C.P. Kaushik, R.J. Kshirsagar, B.S. Tomar and S.V. Godbole, Electron beam irradiation effects in Trombay nuclear waste glass, Nucl. Instrum. Methods B 269 (2011) 2057–2062.

DOI: 10.1016/j.nimb.2011.06.009

Google Scholar

[92] J. Shelby, Effect of radiation on the physical properties of borosilicate glasses, J. Appl. Phys. 51 (1980) 2561-2565.

DOI: 10.1063/1.327980

Google Scholar

[93] E. Zavoisky, Spin-magnetic resonance in paramagnetics, J. Phys. USSR, 9 (1945) 211-216.

Google Scholar

[94] I.A. Shkrob, B. M. Tadjikov, A. D. Trifunac, Magnetic resonance studies on radiation-induced point defects in mixed oxide glasses II. Spin centres in alkali silicate glasses, J. Non. Cryst. Solids 262 (2000) 35-65.

DOI: 10.1016/s0022-3093(99)00669-9

Google Scholar

[95] D.L. Griscom, ESR studies of radiation damage and structure in oxide glasses not containing transition group ions: A contemporary overview with illustrations from the alkali borate system, J. Non Cryst. Solids, 13 (1973/74) 251-285.

DOI: 10.1016/0022-3093(74)90095-7

Google Scholar

[96] F.Y. Olivier, B. Boizot, D. Ghaleb, G. Petite, Raman and EPR studies of β-irradiated oxide glasses: The effect of iron concentration, J. Non Cryst. Solids, 351 (2005) 1061-1066.

DOI: 10.1016/j.jnoncrysol.2005.01.018

Google Scholar

[97] M. Mohapatra, R.M. Kadam, R.K. Mishra, C.P. Kaushik, B.S. Tomar and S.V. Godbole, Gamma radiation induced changes in Trombay nuclear waste glass containing Iron, Int. J. App. Glass Sci. 4 (2013) 53–60.

DOI: 10.1111/j.2041-1294.2012.00094.x

Google Scholar

[98] R. Debnath, Thermally reversible g-ray-induced redox reaction between substitutional iron and aluminum impurity centers in a silica glass, J.Mater.Res.16 (2001) 127-131.

DOI: 10.1557/jmr.2001.0022

Google Scholar

[99] D.L. Griscom, W.J. Weber, Electron spin resonance study of Fe3+ and Mn2+ ions in 17-year-oldnuclear-waste-glass simulants containing PuO2 with different degrees of238Pu substitution, J. Non Cryst. Solids, 357 (2011) 1437-1451.

DOI: 10.1016/j.jnoncrysol.2010.11.017

Google Scholar

[100] M.J. Puska, R.M. Nieminen, Theory of positrons in solids and on solid surfaces, Rev. Mod. Phys. 66 (1994)841-897.

DOI: 10.1103/revmodphys.66.841

Google Scholar

[101] D. B. Cassidy, K. T. Yokoyama, S. H. M. Deng, D. L. Griscom, H. Miyadera, H. W. K. Tom, C. M. Varma, A. P. Mills Jr, Positronium as a probe of transient paramagnetic centers in a-SiO2, Phys. Rev. B 75 (2007) 085415 (6 pages).

DOI: 10.1103/physrevb.75.085415

Google Scholar

[102] M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, S. Yamaguchi, Positron annihilation and ESR study of irradiation-induced defects in silica glass, Nucl. Instrum. Methods B 116 (1996) 347-354.

DOI: 10.1016/0168-583x(96)00070-5

Google Scholar

[103] S. Damrefaer, T. Bretagnon, D. Kerr, Vacancy-type defects in crystalline and amorphous SiO2, J. Appl. Phys. 74 (1993) 884-890.

DOI: 10.1063/1.354882

Google Scholar

[104] M. Hasegawa, M. Tabata, T. Miyamoto, Y. Nagashima, T. Hyodo, M. Fujinami and S. Yamaguchi, Positron and positronium in free volume in oxides: silica glass and neutron irradiated alumina, Mat. Sci. Forum, 175/178 (1995) 269-278.

DOI: 10.4028/www.scientific.net/msf.175-178.269

Google Scholar

[105] P. Asoka-Kumar, K.G. Lynn and D.O. Welch, Characterization of defects in Si and SiO2-Si using positrons, J. Appl. Phys. 76 (1994) 4935-4982.

DOI: 10.1063/1.357207

Google Scholar

[106] Y.Sasaki, Y.Nagai, H.Ohkube, K.Inoue, Z. Tang, M.Hasegawa, Positronium in silica based glasses, Radiat. Phys. Chem. 68 (2003) 569-572.

DOI: 10.1016/s0969-806x(03)00233-0

Google Scholar

[107] S. J. Tao, Positronium annihilation in molecular substances, J. Chem. Phys. 56 (1972) 5499-5511.

Google Scholar

[108] M. Eldrup, D. Lightbody and J. N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic acid, Chem. Phys. 63 (1981) 51-58.

DOI: 10.1016/0301-0104(81)80307-2

Google Scholar

[109] S.V. Raman, Raman spectra, structural units and durability of nuclearwaste glasses with variations in composition andcrystallization: implications for intermediate order in theglass network, Philos. Mag. A, 82 (2002) 3055-3085.

DOI: 10.1080/01418610208239634

Google Scholar

[110] B. Boizot, G. Petite, D. Ghaleb, B. Reynard, G. Calas, Raman study of β-irradiated glasses, J. Non-Cryst. Solids 243 (1999) 268-272.

DOI: 10.1016/s0022-3093(98)00822-9

Google Scholar

[111] N. Ollier, B. Boizot, B. Reynard, D. Ghaleb, G. Petite, Analysis of molecular oxygen formation in irradiated glasses: a Raman depth profile study, J. Nucl. Mater. 340 (2005) 209–213.

DOI: 10.1016/j.jnucmat.2004.11.011

Google Scholar