p.1
p.51
p.69
p.107
p.129
p.143
p.155
p.169
Spectroscopic Investigations of Radiation Damage in Glasses Used for Immobilization of Radioactive Waste
Abstract:
Borosilicate based glass formulations have been found suitable for vitrification of high level nuclear waste (HLW) generated during the reprocessing of spent nuclear fuel from nuclear reactors. These glasses possess desirable properties like high chemical, mechanical, thermal and radiation stability for HLW storage. Also, the amorphous nature of the glass helps accommodate the waste containing a variety of elements easily. Because of the presence of the radioactive components, such as, fission /activation products and minor actinides present in the waste, the glass containment experiences radiation damage that can significantly alter the glass structure which may influence their long term leaching behavior. Spectroscopic techniques provide direct and non-invasive method for investigating this radiation damage in the glasses. The present paper gives a glimpse of the current status and issues regarding the investigation of radiation damage in the glass matrices.
Info:
Periodical:
Pages:
107-128
Citation:
Online since:
July 2013
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] Safety Code on Establishing Radioactive Waste Management System, Atomic Energy Regulatory Board Report, Department of Atomic Energy, Mumbai, India, 2003.
[2] K. Raj, K.K. Prasad, N.K. Bansal, Radioactive waste management practices in India, Nucl. Engg. Design 236 (2006) 914-930.
[3] Closing the Circle on the Splitting of the Atom, U.S. Departmentof Energy, Office of Environmental Management, Washington DC, USA, 1995.
[4] Management and Disposition of Excess Weapons Plutonium, National Academy Press, Washington DC, USA, 1994.
[5] Management and Disposition of Excess Weapons Plutonium– Reactor-Related Options, National Academy Press, Washington DC, USA, 1995.
DOI: 10.17226/4754
[6] A. Kakodkar, Indian Nuclear Power Programme- Materials Challenges, Department of Atomic Energy, Mumbai, India, 2007.
[7] M.I. Ojovan, W.E. Lee, An Introduction to Nuclear Waste Immobilization, Elsevier Science Publishers B.V, Amsterdam, The Netherlands, 2005.
[8] M.I. Ojovan, W.E. Lee, Glassy Wasteforms for Nuclear Waste Immobilization, Metal. Mater. Trans. A, 42 (2011) 837-851.
[9] C. M. Jantzen, K. G. Brown, J. B. Pickett, Durable Glass for Thousands of Years, Int. J. App. Glass Sci. 1 (2010) 38–62.
[10] G.H. Beall, L.R. Pinckney, Nanophase glass ceramics, J. Am. Ceram. Soc. 82 (1999) 5-16.
[11] G.H. Beall, D.A. Duke, Glass–Ceramic Technology, Glass: Science and Technology, vol. 1, Academic Press Inc., San Diego, USA, 1983, p.403.
[12] I.W. Donald, B.L. Metcalfe, R.N.J. Taylor, The immobilization of high level radioactive waste using ceramics and glasses, J. Mater. Sci., 1997, vol. 32, p.5851–5887.
[13] A.R. Boccaccini, E. Bernardo, L. Blain, and D.N. Boccaccini, Borosilicate and lead silicate glass matrix composites containing pyrochlore phases for nuclear waste encapsulation, J. Nucl. Mater. 327 (2004) 148–158.
[14] D.M. Roy, W. Fajun, M.W. Grutzeck, Nuclear Waste Management, in: G.G. Wicks, W.A. Ross (Eds.), Advances in Ceramics, American Ceramic Society Vol. 8, Chicago, USA 1983.
[15] G. J. McCarthy, High level waste ceramics: materials considerations, process simulation, and product characterization, Nucl. Technol. 32 (1977) 92-104.
DOI: 10.13182/nt77-a31741
[16] M.I. Ojovan, O.K. Karlina, Synthesis and properties of glass composite materials for solidification of radioactive waste, Radiochemistry 33(1992) 97-100.
[17] M. J. Plodinec, Borosilicate glasses for nuclear waste immobilization,Glass Tech.41 (2000) 186–192.
[18] W.H. Zachariasen, The atomic arrangement in glass, J. Am. Chem. Soc. 54 (1932) 3841-3851.
DOI: 10.1021/ja01349a006
[19] Vitrification Technologies for treatment of Hazardous and radioactive waste, EPA/625/R-92/002 Rev.00, Prepared for office of Research and Development, Washington, DC, USA,1992.
[20] Spent Fuel and High Level Waste: Chemical Durability and Performance under Simulated Repository Conditions, Results of a Coordinated Research Project 1998–2004, IAEA-TECDOC-1563, International Atomic Energy Agency, Vienna, Austria, 2007.
[21] S. Peuget, J.-N. Cachia, C. Je´gou, X. Deschanels, D. Roudil, V. Broudic, J.M. Delaye, J.-M. Bart, Irradiation stability of R7T7-type borosilicate glass, J.Nucl. Mater. 354 (2006) 1–13.
[22] P. Frugier, S. Gin, Y. Minet, T. Chave, B. Bonin, N. Godon, J.-E. Lartigue, P. Jollivet, A. Ayral, L. De Windt, G. Santarini, SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model, J. Nucl. Mater 380 (2008) 8–21.
[23] W.J. Weber, Radiation effects in nuclear waste glasses, Nucl. Instrum. Meth. B 32 (1988) 471-479.
[24] J.A.C. Marples, Dose rate effects in radiation damage to vitrified radioactive waste, Nucl. Instrum. Meth. B 32 (1988) 480-486.
[25] W.E. Lee, M.I. Ojovan, M.C. Stennett, N.C. Hyatt, Immobilization of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105 (2006) 3–12.
[26] W.E. Lee, J. Juoi, M.I. Ojovan, O.K. Karlina, Processing Ceramics for Radioactive Waste Immobilization, Adv. Sci. Tech. 45 (2006) 1986–1995.
[27] M.I. Ojovan, W.E. Lee: New Developments in Glassy Nuclear Wasteforms, Nova Science Publishers, New York, USA, 2007.
[28] V.S. Yalmali, D.S. Deshingkar, P.K. Wattal and S.R. Bharadwaj, Preparation and characterization of vitrified glass matrix for highlevel waste from MOX fuel processing, J. Non Cryst. Solids 353 (2007) 4647–4653.
[29] C.P. Kaushik, R.K. Mishra, P. Sengupta, A. Kumar, D. Das, G.B. Kale, K. Raj, Barium borosilicate glass–a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste, J. Nucl. Mater. 358 (2006) 129-138.
[30] W. J. Weber, A. Navrotsky, S. Stefanovsky, E. R. Vance, E. Vernaz, Materials Science of high level nuclear waste immobilization, MRS Bull. 34 (2009) 46-53.
DOI: 10.1557/mrs2009.12
[31] W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobbs, A. Navrotsky, D.L. Price, A.M. Stoneham, M.C. Weinberg, Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition, J. Mater. Res. 12 (1997) 1946-1978.
[32] W. J. Weber, L. K. Mansur, F. W. Clinard, Jr., D. M. Parkin, Radiation effects on materials in high radiation environment: A workshop summary, J. Nucl. Mater. 184 (1991) 1-21.
[33] W. J. Weber, F. P. Roberts, A review of radiation effects in solid nuclear waste forms, Nucl. Technol. 60 (1983) 178-198.
[34] I. A. Shkrob , B. M. Tadjikov, A. D. Trifunac, Magnetic resonance studies on radiation-induced point defectsin mixed oxide glasses-I: Spin centres in B2O3 and alkali borate glasses, J. Non Cryst. Solids 262 (2000) 6-34.
[35] D.L. Griscom, C.I. Merzbacher, R. A. Weeks, R. A. Zuhr, Electron spin resonance studies of defect centers induced in a high-level nuclear waste glass simulant by gammairradiation and ion-implantation, J. Non Cryst. Solids, 258(1999) 34–47.
[36] E. Malchukova, B. Boizot, G. Petite, D. Ghaleb, Effect of Sm, Gd co-doping on structural modifications in alumina-borosilicate glasses under β-irradiation, J. Non Cryst. Solids 354 (2008) 3592-3596.
[37] B. Boizot, G. Petite, D. Ghaleb, N. Pellerin, F. Fayon, B. Reynard, G. Calas, Migration and segregation of sodium under β-irradiation in nuclear glasses, Nucl. Instrum. Meth. B 166/167 (2000) 500-504.
[38] J. de Bonfils, S. Peuget, G. Panczer, D. de Ligny, S. Henry, P.Y. Noël, A. Chenet, B. Champagnon, Effect of chemical composition on borosilicate glass behavior under irradiation, J. Non Cryst. Solids 356 (2010) 388-393.
[39] S. Sato, F. Hirotaka, K. Asakura, K. Ohta, T. Tamai, Radiation effects of simulated waste glass irradiated with ion electron and γ rays, Nucl. Instrum. Meth. B l (1984) 534-537.
[40] G. Möbus, M. Ojovan, S. Cook, J. Tsai, G. Yang, Nanoscale quasi melting of alkali borosilicate glasses under electron irradiation, J. Nucl. Mater.396 (2010) 264-271.
[41] J.M. Juoi, M.I. Ojovan, W.E. Lee, Microstructure and leaching durability of glass composite waste forms for spent clinoptilolite immobilization, J. Nucl. Mater. 372 (2008) 358-366.
[42] M. I. Ojovan, W. E. Lee, Alkali ion exchange in γ irradiated glasses, J. Nucl. Mater. 335 (2004) 425-432.
[43] F.H. El Batal, N. Nada, S.M. Desouky, M.M.I. Khalil, Absorption and infrared spectra of gamma irradiated ternary silicate glasses containing Co, Ind.J.Pure Appl.Phys.42 (2004) 711-721.
[44] F.H. El Batal, A.A. El Kheshen, M.A. Azooz, S.M. Abo-Naf, Gamma ray interaction with lithium di-borate glasses containing transition metals ions, Opt. Mater. 30 (2008) 881-891.
[45] N. A. El-Alaily, F. M. Ezz-Eldin, H. A. El Batal, Durability of some gamma irradiated alkali borate glasses, Radiat. Phys. Chem. 44 (1994) 45-51.
[46] A K Sandhu, S Singh, O P Pandey, Gamma ray induced modifications ofquaternary silicate glasses, J. Phys. D: Appl. Phys. 41 (2008) 165402 (6 pages).
[47] M.M. Morsi, S. El-Konsol, M.A. Adawi, Effect of neutron and gamma irradiation on some properties of borate glasses, J. Non-Cryst. Solids 58 (1983) 187-199.
[48] S. Baccaro, N. Catallo, A. Cemmi, G. Sharma, Radiation damage of alkali borate glasses for application in safe nuclear waste disposal, Nucl. Instrum. Meth. B 269 (2011) 167-173.
[49] T. Tsuboi, Optical properties of Ce3+/Tb3+-co-doped borosilicate glass, Eur. Phys. J. Appl. Phys. 26 (2004) 95-101.
[50] S. Baccaro, A. Cecilia, M. Montecchi, M. Nikl, P. Polato, Radiation damage of silicate glasses doped with Tb3+ and Eu3+, J. Non-Cryst. Solids 315 (2003) 271-275.
[51] S. Baccaroa, A. Cecilia, E. Mihokova, M. Nikl, K. Nitsch, P. Polato, G. Zanella, R. Zannoni, Radiation damage induced by gamma irradiation on Ce3+ doped phosphate and silicate scintillating glasses, Nucl. Instrum. Meth. A 476 (2002) 785-789.
[52] E. Malchukova, B. Boizot, D. Ghaleb, G. Petite, Optical properties of pristine and g-irradiated Sm doped borosilicate glass, Nucl. Instrum. Meth. A 537 (2005) 411–414.
[53] O. J. McGann, P. A. Bingham, R. J. Hand, A. S. Gandy, M. Kavčič, M. Žitnik, K. Bučar, R. Edge, N. C. Hyatt, The effects of g-radiation on model vitreous wasteforms intended for the disposal of intermediate and high level radioactive wastes in the United Kingdom, J. Nucl. Mater. 429 (2012) 353-367.
[54] Hj. Matzke, Radiation damage in nuclear materials, Nucl. Instrum. Meth. B 65 (1992) 30-39.
[55] G.W. Arnold, Radiation damage effects in nuclear waste glasses, Radiat. Eff. 74 (1983) 151-159.
[56] J. de Bonfils, S. Peuget, G. Panczer, D. de Ligny, S. Henry, P.Y. Noël, A. Chenet, B. Champagnon, Effect of chemical composition on borosilicate glass behaviour under irradiation, J. Non-Cryst.Solid356 (2010) 388-393.
[57] J. de Bonfils, G. Panczer, D. de Ligny, S. Peuget, B. Champagnon, Behaviour of simplified nuclear waste glasses under gold ions implantation: A microluminescence study, J. Nucl. Mater. 362 (2007) 480-484.
[58] A. Abbas, Y. Serruys, D. Ghaleb, J.M. Delaye, B. Boizot, B. Reynard, G. Calas, Evolution of nuclear glass structure under α-irradiation, Nucl. Instrum. Meth. B 166/167 (2000) 445-450.
[59] J.M. Costantini, C. Trautmann, L. Thomé, J. Jagielski, F. Beuneu, Swift heavy ion induced swelling and damage in yttria stabilized zirconia, J. App. Phys. 101 (2007) 073501 (8 pages).
DOI: 10.1063/1.2714651
[60] S. Peuget, J.N. Cachia, C. Je´gou, X. Deschanels, D. Roudil, V. Broudic, J.M. Delaye, J.M. Bart, Irradiation stability of R7T7-type borosilicate glass, J. Nucl. Mater. 354 (2006) 1-13.
[61] R.A.B. Devine, Macroscopic and microscopic effects of radiation in amorphous SiO2, Nucl. Instrum. Meth. B 91 (1994) 378-390.
[62] A. Haddi, P. Trocellier, I. Draganic, F. Farges, S. Poissonnet, P. Bonnaillie, Ion irradiation behavior and chemical durability of simple borosilicate glasses, Nucl. Instrum. Meth. B 266 (2008) 3182-3185.
[63] Hj. Matzke, Radiation damage effects in nuclear materials, Nucl. Instrum. Meth. B 32 (1988) 455-470.
[64] Hj. Matzke, G. Della Mea, J.C. Dran, G. Linker, B. Tiveron, Radiation damage in nuclear waste glasses following ion implantation at different temperatures, Nucl. Instrum. Meth. B 46 (1990) 253-260.
[65] G. W. Arnold, Ion implantation effects in alkali borosilicate glasses, Radiat. Eff.98 (1986) 55-61.
[66] P. Trocellier, A. Haddi, S. Poissonnet, P. Bonnaillie, Y. Serruys, Thorium and cerium chemical behavior in ion irradiated alkali borosilicate glasses, Nucl. Instrum. Meth. B 249 (2006) 145-149.
[67] H. Kudo, T. Akagawa, Y. Katsumura, Microfluoroscence spectroscopy and ESR study on ion beam irradiated glasses, Nucl. Instrum. Meth. B 245 (2006) 201-203.
[68] S. Sato, H. Furuya, K. Asakura, K. Ohta, T. Tamai, Radiation effects of simulated waste glass irradiated with ion, electron and gamma rays, Nucl. Instrum. Meth. B l (1984) 534-537.
[69] T. Banba, S. Matsumoto, S. Muraoka, K. Yamada, M. Saito, H. Ishikawa, N. Sasaki, Effects of alpha decay on the properties of actual nuclear waste glass, MRS Proceeding 353 (1994) 1397-1420.
[70] R. C. Ewing, W. J. Weber, and F. W. Clinard, Jr., Radiation effects in nuclear waste forms for high level radioactive waste, Prog. Nucl. Energy 29(1995)63-127.
[71] G. Malow, H. Andresen, Scientific Basis for Nuclear WasteManagement,Vol-1,Plenum Press, New York, USA, 1979, p.109.
[72] M. Antonini, F. Lanza, A. Manara, Ceramics in Nuclear Waste Management, T. D. Chikalla, J. E. Mendel (Eds), CONF-790420, National Technical Information Service, Springfield, VA, USA 1979, p.289.
[73] M.M. Morsi, S. El-Konsol, M.A. Adawi, Effect of neutron and gamma irradiation on some properties of borate glasses, J. Non-Cryst.Solid58 (1983) 187-199.
[74] L. Luneville, D. Simeone, D. Gosset, A new tool to compare neutron and ion irradiation in materials, Nucl. Instrum. Meth. B 250 (2006) 71–75.
[75] D.R. Cousens, S. Myhra, The effect of ionizing radiation on HLW glasses, J. Non-Cryst.Solid54 (1983) 345-365.
[76] D.R. Neuville, L. Cormier, B. Boizot, A. Flank,Structure of β irradiated glasses studied by X-ray absorption and Raman spectroscopies, J. Non-Cryst. Solids, 323 (2003) 207-214.
[77] J. H. Schulman, W. D. Compton, Color centers in solids, MacMillan Co., New York, USA, 1962.
[78] E. Lell, N. J. Kreid, J. R. Hensler, Progresses in Ceramic Science, Volume-4, in: J. Burke (Ed.) Pergamon Press, Oxford, UK, (1966)
[79] M. Goldberg, P. L. Mattern, K. Lengweiler, P.W. Levy, Radiation induced coloring of Cherenkov counter glasses, Nucl. Instrum. Meth. 108 (I973) 119-123.
[80] M.M. Cannas, S. Agnello, F.M. Gelardi, R. Boscaino, A. N. Trukhin, P. Liblik, C. Lushchik, M.F. Kink, Y. Maksimovand R.A. Kink, Luminescence of gamma radiation induced defects in α-quartz, J. Phys. Condens. Matter 16(2004)7931-7940.
[81] L. Vaccaro, M. Cannas, B. Boizot and A. Parlato, Radiation induced generation of non bridging oxygen holecentre in silica: intrinsic and extrinsic processes, J. Non-Cryst. Solid 353 (2007) 586-589.
[82] G. Blasse, Luminescence of inorganic solids: from isolated centers to concentrated systems, Prog. Solid St. Chem. 18(1988) 79-171.
[83] N. Kristianpoller, Luminescence centers in quartz, J. Lumin. 31 & 32(1984)299-301.
[84] L. Nuccio, S. Agnello, R. Boscaino, B. Boizot, A. Parlato, Generation of oxygen deficient point defects in silica by gamma and beta irradiation, J. Non-Cryst. Solid 353 (2007) 581-585.
[85] M. Mohapatra, V.K. Manchanda, Characterization of borosilicate glass as host matrix for high level waste, IOP Conf. Series: Mater. Sci. Engg. 2 (2009) 012006 (5 pages).
[86] M. Cannas, L. Vaccaro, B. Boizot, Spectroscopic parameters related to non-ridging oxygen hole centers in amorphous SiO2, J. Non-Cryst. Solid 352 (2006) 203-208.
[87] W.A. Hollerman, S.M. Goedeke, R.J. Moore, L.A. Boatner, S.W. Allison, and R.S. Fontenot, Unusual fluorescence emission characteristics From Europium- Doped Lead Phosphate Glass Caused by 3 MeV Proton Irradiation, 2007 IEEE Nuclear Science Symposium Conference Record, 1368-1372.
[88] M. Mohapatra, R.K. Mishra, C.P. Kaushik, S.V. Godbole, Photoluminescence investigations of rare earth (Eu and Gd) incorporated nuclear waste glass, Physica B 405 (2010) 4790–4795.
[89] M. Mohapatra, R.M. Kadam, R.K. Mishra, C.P. Kaushik, B.S. Tomar and S.V. Godbole, Gamma radiation induced changes in nuclear waste glass containing Eu, Physica B406 (2011) 3980-3984.
[90] R. Kaur, S. Singh, O. P. Pandey, FTIR structural investigation of gamma irradiated BaO–Na2O–B2O3–SiO2 glasses, Physica B 407 (2012) 4765–4769.
[91] M. Mohapatra, R.M. Kadam, R.K. Mishra, D. Dutta, P.K. Pujari, C.P. Kaushik, R.J. Kshirsagar, B.S. Tomar and S.V. Godbole, Electron beam irradiation effects in Trombay nuclear waste glass, Nucl. Instrum. Methods B 269 (2011) 2057–2062.
[92] J. Shelby, Effect of radiation on the physical properties of borosilicate glasses, J. Appl. Phys. 51 (1980) 2561-2565.
DOI: 10.1063/1.327980
[93] E. Zavoisky, Spin-magnetic resonance in paramagnetics, J. Phys. USSR, 9 (1945) 211-216.
[94] I.A. Shkrob, B. M. Tadjikov, A. D. Trifunac, Magnetic resonance studies on radiation-induced point defects in mixed oxide glasses II. Spin centres in alkali silicate glasses, J. Non. Cryst. Solids 262 (2000) 35-65.
[95] D.L. Griscom, ESR studies of radiation damage and structure in oxide glasses not containing transition group ions: A contemporary overview with illustrations from the alkali borate system, J. Non Cryst. Solids, 13 (1973/74) 251-285.
[96] F.Y. Olivier, B. Boizot, D. Ghaleb, G. Petite, Raman and EPR studies of β-irradiated oxide glasses: The effect of iron concentration, J. Non Cryst. Solids, 351 (2005) 1061-1066.
[97] M. Mohapatra, R.M. Kadam, R.K. Mishra, C.P. Kaushik, B.S. Tomar and S.V. Godbole, Gamma radiation induced changes in Trombay nuclear waste glass containing Iron, Int. J. App. Glass Sci. 4 (2013) 53–60.
[98] R. Debnath, Thermally reversible g-ray-induced redox reaction between substitutional iron and aluminum impurity centers in a silica glass, J.Mater.Res.16 (2001) 127-131.
[99] D.L. Griscom, W.J. Weber, Electron spin resonance study of Fe3+ and Mn2+ ions in 17-year-oldnuclear-waste-glass simulants containing PuO2 with different degrees of238Pu substitution, J. Non Cryst. Solids, 357 (2011) 1437-1451.
[100] M.J. Puska, R.M. Nieminen, Theory of positrons in solids and on solid surfaces, Rev. Mod. Phys. 66 (1994)841-897.
[101] D. B. Cassidy, K. T. Yokoyama, S. H. M. Deng, D. L. Griscom, H. Miyadera, H. W. K. Tom, C. M. Varma, A. P. Mills Jr, Positronium as a probe of transient paramagnetic centers in a-SiO2, Phys. Rev. B 75 (2007) 085415 (6 pages).
[102] M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, S. Yamaguchi, Positron annihilation and ESR study of irradiation-induced defects in silica glass, Nucl. Instrum. Methods B 116 (1996) 347-354.
[103] S. Damrefaer, T. Bretagnon, D. Kerr, Vacancy-type defects in crystalline and amorphous SiO2, J. Appl. Phys. 74 (1993) 884-890.
DOI: 10.1063/1.354882
[104] M. Hasegawa, M. Tabata, T. Miyamoto, Y. Nagashima, T. Hyodo, M. Fujinami and S. Yamaguchi, Positron and positronium in free volume in oxides: silica glass and neutron irradiated alumina, Mat. Sci. Forum, 175/178 (1995) 269-278.
[105] P. Asoka-Kumar, K.G. Lynn and D.O. Welch, Characterization of defects in Si and SiO2-Si using positrons, J. Appl. Phys. 76 (1994) 4935-4982.
DOI: 10.1063/1.357207
[106] Y.Sasaki, Y.Nagai, H.Ohkube, K.Inoue, Z. Tang, M.Hasegawa, Positronium in silica based glasses, Radiat. Phys. Chem. 68 (2003) 569-572.
[107] S. J. Tao, Positronium annihilation in molecular substances, J. Chem. Phys. 56 (1972) 5499-5511.
[108] M. Eldrup, D. Lightbody and J. N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic acid, Chem. Phys. 63 (1981) 51-58.
[109] S.V. Raman, Raman spectra, structural units and durability of nuclearwaste glasses with variations in composition andcrystallization: implications for intermediate order in theglass network, Philos. Mag. A, 82 (2002) 3055-3085.
[110] B. Boizot, G. Petite, D. Ghaleb, B. Reynard, G. Calas, Raman study of β-irradiated glasses, J. Non-Cryst. Solids 243 (1999) 268-272.
[111] N. Ollier, B. Boizot, B. Reynard, D. Ghaleb, G. Petite, Analysis of molecular oxygen formation in irradiated glasses: a Raman depth profile study, J. Nucl. Mater. 340 (2005) 209–213.