Correlation Coefficient between Vickers Hardness and Nuclear Technique

Article Preview

Abstract:

The aim of this work is to establish a correlation coefficient between the positron annihilation lifetime technique (PALS) and the Vickers hardness for the heat treatable aluminum alloys (6066, 6063).The potential of positron annihilation spectroscopy in the study of light alloys is illustrated with special regards to age hardening, severe plastic deformation, annealing and quenching in aluminum alloys. Vickers hardness is the standard method for measuring the hardness of metals, particularly those with extremely hard surfaces. Accordingly, a correlation coefficient of 90 % between τ and Hv is obtained. This correlation can help us to explain many behaviors of these alloys under deferent conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-136

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Brandt W, Dupasquier A, editors. Positron solid-state physics. Amsterdam: North-Holland; 1983.

Google Scholar

[2] Salgueiro W, Somoza A, Cabrera O, Consolati G. Cem Concr Res 2004;34:91.

Google Scholar

[3] Jean YC. Microchem J 1990;42:72; Jean YC. Mater Sci Forum 1995;175–178:59.

Google Scholar

[4] Dlubek G, Fretwell HM, Alam MA. Macromolecules 2000;33:87.

Google Scholar

[5] Jean YC, Mallon PE, Schrader DM, editors. Principles and applications of positron and positronium chemistry. London: World Scientific; 2003.

DOI: 10.1142/9789812775610_0001

Google Scholar

[6] Krause-Rehberg R, Leipner HS. Positron annihilation in semiconductors. Berlin: Springer; 1999.

DOI: 10.1007/978-3-662-03893-2_3

Google Scholar

[7] P. Hautojsrvi. ed., Positrons in Solids (Springer, Berlin, 1979).

Google Scholar

[8] W. Brandt, A. Dupasquier, eds., Positron Solid-State Physics (North Holland, Amsterdam, 1983).

Google Scholar

[9] A.Dupasquier, A.P. Mills, eds., Positron Spectroscopy of Solids (North-Holland, Amsterdam, 1994).

Google Scholar

[10] M. Eldrup. In: Defects in Solids, eds. A.V. Chadwick and M. Terenzi (Plenum, New York, 1986) p.145.

Google Scholar

[11] M. Eldrup. J. Phys. (Paris) IV Colloq. 5 (1995) Cl-93.

Google Scholar

[12] M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66 (1994) 841.

Google Scholar

[13] Troeger, L.P. and Starke, E.A., "Microstructural and Mechanical Characterization of a Superplastic 6xxx Aluminum Alloy", Materials Science and Engineering, A277, 102-113, 2000.

DOI: 10.1016/s0921-5093(99)00543-2

Google Scholar

[14] M.A. Abdel-Rahman, M.S. Abdallah and Emad A. Badawi: Surface Review and Letters 11 (5) (2004) 427.

Google Scholar

[15] M.A. Abdel-Rahman, M.S. Abdallah and Emad A. Badawi: Surface Review and Letters 12 (2) (2005).

Google Scholar

[16] P. Kirkegaard, M. Eldrup, O. Mogensen and N. Pedersen: Comp. Phys. Commun. vol. 23, 1981, P. 307.

Google Scholar

[17] A.Somoza, A.Dupasquier. Journal of materials processing technology 135 (2003) 83-90.

Google Scholar

[18] Dupasquier , G. Kogel , A. Somoza. Acta Materialia 52 (2004) 4707–4726.

Google Scholar

[19] C.E. Macchi , A. Somoza , A. Dupasquier , I.J. Polmear, Acta Materialia 51 (2003) 5151–5158.

DOI: 10.1016/s1359-6454(03)00364-1

Google Scholar

[20] E. Hassan Aly , M. Mohsen and Emad M. Ahmed, Egypt. J. Solids, Vol. (31), No. (2), (2008).

Google Scholar