Theoretical Studies of the Local Structures and Spin Hamiltonian Parameters for the Cu2+ Centers in Alkali Barium Borate Glasses

Article Preview

Abstract:

The spin Hamiltonian parameters (g factors g||, g and the hyperfine structure constants A||, A) for the Cu2+ centers in alkali barium borate glasses were theoretically studied based on the high-order perturbation formulas of these parameters for a 3d9 ion in a tetragonally elongated octahedron. From the calculations, the ligand octahedra around Cu2+ are suggested to suffer about 9.4%, 10.7%, and 11.1% relative elongation along C4 axis for the alkali barium borate glasses (Li-Ba-B, Na-Ba-B and K-Ba-B, respectively), the results are in good agreement with the observed values. In addition, the negative signs for A|| and A of the studied Cu2+ centers were also suggested in the discussion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-93

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. S. Rao, B. Sreedhar, J. L. Rao and S.V.J. Lakshman, J. Non-Cryst. Solids, Vol.144(1992), p.169

Google Scholar

[2] K. Srinivasulu, I. Omkaram, H. Obeidc, A.Suresh Kumar and J.L. Rao, Physica B, Vol.407(2012), p.4741

Google Scholar

[3] R. H. Page, K. I. Schaffers, L. D. Deloach, G. D. Wilke, F., D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen and A. Burger, IEEE J. Quantum Elect, Vol. 33 (1997), p.609

DOI: 10.1109/3.563390

Google Scholar

[4] S. Y. Wu, X. Y. Gao and H. N.Dong, J. Magn. Magn. Mater, Vol. 301(2006), P. 67

Google Scholar

[5] W. H. Wei, S. Y. Wu and H. N. Dong, Z. Naturforsch, Vol. 60a(2005), p.541

Google Scholar

[6] W. L. Feng, Phil. Mag. Lett, Vol. 87(2007), p.663

Google Scholar

[7] R. P. S. Chakradhar, A. Murali and J. L. Rao, J. Alloys Compd, Vol. 265(1998),p.29

Google Scholar

[8] R. M. Krishna, J. J. André, V. P. Seth, S. Khasa and S. K. Gupta, Opt. Mater,Vol. 12(1999), p.47

Google Scholar

[9] H.N. Dong, Z. Naturforsch, Vol.60a(2005), p.615

Google Scholar

[10] W. L. Feng, Y. M. Nie, N. Hu, W. Z. Zhang, Y. Wu and T. H. Chen, Spectrosc. Lett, Vol.41(2008), p.151

Google Scholar

[11] H. M. Zhang and X. Wan, J. Non-Cryst. Solids, Vol. 361(2013), p.43

Google Scholar

[12] W. C. Zheng, Y. Mei, Y.G. Yang, H.G. Liu, Philos. Mag, Vol.92(2012), p.760

Google Scholar

[13] H. M. Zhang, S. Y. Wu, Z. H. Zhang, Condens. Matter Phys, Vol. 14(2011),p.23703

Google Scholar

[14] W. Q. Yang, L. He, H. G. Liu, W. C. Zheng, Phys. Status Solidi B, Vol. 246(2009), p. (1915)

Google Scholar

[15] Z. Y. Yang, C. Rudowicz, and J. Qin, Physica B, Vol. 318(2002), p.188

Google Scholar

[16] M. G. Zhao, J. A. Xu, G. R. Bai, and H. S. Xie, Phys. Rev B, Vol. 27(1983), p.1516

Google Scholar

[17] J. S. Griffith: The Theory of Transition-metal Ions(Cambridge University Press, London , 1964)

Google Scholar

[18] H. N. Dong, S. Y. Wu and P. Li, Phys. stat. sol. (b) , Vol. 241(2004), p. (1935)

Google Scholar

[19] D. J. Newman and B. Ng, Rep. Prog. Phys, Vol. 52(1989) ,p.699

Google Scholar

[20] C. K. Jørgensen: Absorption Spectra and Chemical Bonding in Complexes(Pergamon Press, Oxford, 1962)

Google Scholar

[21] S. Y. Wu, H. M. Zhang, P. Xu and S. X. Zhang, Spectrochim. Acta A, Vol. 75(2010), p.230

Google Scholar